3 (Sem-4/CBCS) PHY HC1

2022

PHYSICS

(Honours)

Paper: PHY-HC-4016

(Mathematical Physics-III)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any seven questions of the following: 1×7=7
 - (a) What is the argument of -3i?
 - (b) Express $f(z) = z^2$ in the form of u(x, y) + iv(x, y).
 - (c) What is singular point of an analytic function?

- (d) Evaluate $\delta_q^p A_s^{qr}$.
- (e) State the shifting property of Fourier transform (FT).
- (f) Find the residue of the complex function $f(z) = \frac{1}{z^2 + 1}$ at the pole z = i.
- (g) Show that $L(1) = \frac{1}{s}, s > 0$.
- (h) What is rank of a tensor? Give one example of a zero rank tensor.
- (i) Define Fourier inverse transform.
- (j) Write the polar form of a complex number.
- 2. Answer **any four** of the following questions: $2\times4=8$
 - (a) Check whether the function log z is analytic or not.
 - (b) Plot the complex number $e^{(1-\pi/6i)}$ in Argand diagram.

- (c) Prove that the contraction of the tensor A_m^l is invariant.
- (d) Obtain the Fourier transform of the function

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

- (e) Using the property of Levi-Civita symbol prove that $\vec{A} \times \vec{B} = -(\vec{B} \times \vec{A})$.
- (f) If $L[f(x)] = \overline{f}(s)$, then show that $L[e^{ax} f(x)] = \overline{f}(s-a).$
- (g) Evaluate the integral $\oint \frac{dz}{z}$ around a unit circle.
- (h) Expand the function

$$f(z) = \frac{1}{z+1}$$
, about $z = 1$ in Taylor series up to two terms.

- 3. Answer any three questions of the following: 5×3=15
 - (i) Find the value of the integral $\int_{0}^{1+i} (x-y-ix^2) dz$, along real axis from z=0 to z=1 and then along the line parallel to imaginary axis from z=1 to z=1+i.
 - (ii) State and prove Cauchy's integral formula.
 - (iii) Obtain the Fourier sine and cosine transform of the function

$$f(x) = \begin{cases} 1, & 0 < x < \pi/2 \\ 0, & x > \pi/2 \end{cases}$$

- (iv) What is Kronecker delta? Show that it is a mixed tensor of rank 2. 2+3=5
- (v) Find the Laplace transform of the function $f(t) = \sin at$.
- (vi) Show that $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ and $Arg(z_1 \cdot z_2) = Arg(z_1) + Arg(z_2)$.

- (vii) What are raising and lowering of indices of a tensor? Prove that the raising and lowering operation of indices are reciprocal to each other. 2+3=5
- (viii) Evaluate $\oint \frac{\cos z}{z} dz$, where C is an ellipse given by $9x^2 + 4y^2 = 1$, using Cauchy's integral formula.
- 4. Answer any three of the following questions: 10×3=30
 - (a) (i) Show that if f(z) = u + iv is an analytic function and $\vec{F} = \hat{i}v + \hat{j}u$ is a vector, then $div\vec{F} = 0$ and $curl\vec{F} = 0$ are equivalent to Cauchy-Reimann equations.
 - (ii) State and prove quotient law of tensors.
 - (b) (i) The Laplace transform of sin3t is $\frac{3}{S^2+9}$ and the Laplace

transform of cos5t is $\frac{S}{S^2 + 25}$. Find the Laplace transform of 5sin3t + 3cos5t using linearity property of Laplace transform.

- (ii) Find the inverse Laplace transform of $\frac{4S+5}{(S-1)^2(S+2)}$.
- (c) (i) If A_{λ} is a covariant tensor of rank

 1, show that $\frac{\partial A_{\lambda}}{\partial x_{\mu}}$ is not a tensor.
 - (ii) Prove the following identities: 2+2+3=7

3

- (a) $\delta_{ii} = 3$
 - (b) $\delta_{ik}\varepsilon_{ikm} = 0$
 - (c) $\varepsilon_{iks}\varepsilon_{mps} = \delta_{im}\,\delta_{kp} \delta_{ip}\,\delta_{km} = 0$
- (d) State and prove Fourier integral theorem.
- (e) (i) Using the method of residues, show that $\int_{0}^{\infty} \frac{dx}{x^4 + 1} = \frac{\pi\sqrt{2}}{4}.$
 - (ii) Express the complex number 1+2i/1-3i in $r(\cos\theta+i\sin\theta)$ form.

(f) Evaluate **any two** of the following integrals by contour integration:
$$5\times2=10$$

(i)
$$\int_{0}^{\infty} \frac{dx}{x^2 + 1}$$

(ii)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$$

(iii)
$$\int_{-\infty}^{+\infty} \frac{e^{ax}}{1+e^x} dx$$

- (g) Solve the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ under the conditions that, y(x, 0) = 0, y'(x, 0) = 0, x > 0 and y(0, t) = t, $\lim_{x \to \infty} y(x, t) = 0$, $t \ge 0$.
- (h) (i) What is residue of a complex function? State and prove Cauchy's residue theorem.

1+1+4=6

(ii) Show that any contravariant or covariant tensor of the second order can be resolved into symmetric and antisymmetric parts.