2016

CHEMISTRY

(Major)

Paper : 2.1

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer in brief: .

 $1 \times 7 = 7$

- (a) Two gases A and B have same value of van der Waals' constant a. If gas A has higher value of van der Waals' constant b, then state which of these two gases will be more compressible under identical condition of pressure and temperature.
- (b) Of various liquid crystal phases, state which can diffract light and have colours that depend on the temperature.
- (c) Applying the principle of equipartition of energy, estimate the value of C_V for helium gas at room temperature.

(d) Write the cell reaction that takes place in the cell

 $Pt(s) | H_2(g) | H^+(aq) | | CI^-(aq) | Hg_2Cl_2(s) | Hg(l)$

- (e) Molality of a solution of benzoic acid in benzene at the freezing point is 0.468 mol kg⁻¹. What will be the observed molality of the solution at the boiling point?
- (f) The molar conductance at infinite dilution of KBr is 1·5×10⁻² S m² mol⁻¹ and the transport number of K⁺ is 0·48. What will be the ion conductance of K⁺ at infinite dilution?
- (g) Consider two liquids A and B such that A has half the surface tension and twice the density of B. If liquid A rises to a height of 2.0 cm in a capillary tube, what will be the height to which liquid B will rise in the same capillary?
- 2. Answer the following questions:

 $2 \times 4 = 8$

(a) For a van der Waals' gas, the value of critical pressure is 1.01×10^7 Pa and that of the van der Waals' constant b is 5.0×10^{-5} m³ mol⁻¹. Calculate its critical temperature.

STATE OF THE PROOF BY THE PARTY.

- (b) Define mean free path. How does it vary with temperature in a sample of gas at constant volume?
- (c) State the principle of corresponding states.
- (d) Water at 25 °C rises through a capillary of radius 0.20 mm. What is the surface tension of water at this temperature?
- 3. (a) Answer either (i) or (ii):
 - (i) Discuss about the capillary rise method for determination of surface tension of liquid.

Or

- (ii) Define refractive index. Density of ethanol is $0.78 \,\mathrm{g}\,\mathrm{cm}^{-3}$. If the refractive index of ethanol is 1.348, calculate the values of specific and molar refractions. 1+2+2=5
- (b) Answer either (i) or (ii):
 - (i) Define buffer solution. Deduce the Henderson-Hasselbalch equation for both acidic and basic buffers.

1+2+2=5

Or

(ii) Derive the Stokes-Einstein relation. The molar ionic conductance at infinite dilution of silver ions is

A16/723

 61.92×10^{-4} S m² mol⁻¹ at 25 °C. Calculate the ionic mobility of silver ions at 25 °C at infinite dilution.

3+2=5

3

2

(c) Answer either (i) and (ii) or (iii) and (iv):

(i) Calculate the equilibrium constant of the following reaction at 298 K:

> $FeSO_4$ (aq) + Cd (s) \rightleftharpoons Fe (s) + CdCl₂ (aq) Given.

$$E_{\text{Cd}^{2+}/\text{Cd}}^{\circ} = -0.488 \text{ V}$$

 $E_{\text{Fe}^{2+}/\text{Fe}}^{\circ} = -0.469 \text{ V}$

$$E_{\text{Fe}^{2+}/\text{Fe}}^{\circ} = -0.469 \,\text{V}$$

(ii) Write the reactions taking place at the anode and the cathode of a Leclanché or dry cell.

- (iii) What is fuel cell? What are the advantages of a fuel cell?
 - (iv) A zinc rod is placed in 0.1 M solution of zinc sulphate at 25 °C. Assuming that the salt dissociated to the extent of 95 percent at this dilution, calculate the potential of the electrode at this temperature.

Given, $E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}$

3

4.		swer either [(i), (ii) and (iii)] or [(iv), (v)	
	(1)	Using the kinetic molecular theory of gas, deduce an expression for the thermal conductivity of a gas.	4
	(ii)	Deduce an expression for the energy of 1 mole CO_2 (g) at TK by using the principle of equipartition	
		of energy.	4
	(iii)	Show that the critical compressibility factor, Z_C , of a van der Waals' gas is 0.375 .	2
	21. 9	Or	
	(iv)	Deduce an expression for root-mean-square velocity by using	
	Trail and a July Fac	the kinetic molecular theory of gas.	4
	(v)	Define collision cross-section.	2
	engen (vi) Tugus Tugus Salance Tugus Salance	For O_2 (g) molecules, the root-mean-square velocity at T_1 , the average velocity at T_2 and the most probable velocity at T_3 are all equal to 1.5×10^3 ms ⁻¹ . Calculate T_1 , T_2	•
		and T_3 .	4

- (b) Answer either [(i) and (ii)] or [(iii), (iv) and (v)]:
- (i) Using the concept of chemical potential, show that relative lowering of vapour pressure of a dilute solution containing a non-volatile, non-electrolyte solute is equal to the mole fraction of the solute.

(ii) 2 g of benzoic acid dissolved in 25 g of benzene shows a depression in freezing point of 1.62 K. What is the percentage association of benzoic acid if it forms a dimer in solution? Given K_f for benzene is 4.9 K kg mol⁻¹.

Or

- (iii) Using the concept of chemical potential, deduce the van't Hoff equation for osmotic pressure of a dilute solution.
- (iv) The complex compound K₄[Fe(CN)₆] is 45% dissociated in M/10 aqueous solution of the complex at 27 °C. Calculate the osmotic pressure of the solution.

5

5

5

(v)	Give the molecular interpretation of lowering of vapour pressure of a solvent in presence of a solute.
I I'm	digger grans took as project of
	wer either [(i), (ii) and (iii)] or [(iv), (v)
	(vi) : gravitus propus a
(i)	Explain the Hittorf's method for determination of transport number of ions.
(ii)	Comment on the exceptionally high
	ionic mobility of H ⁺ ion in hydroxylic solvents.
(iii)	A solution of 0.1 M LiCl with of
	$1.06 \times 10^{-2} \mathrm{Scm^{-1}}$ is placed in a
	moving boundary cell having a
	cross-sectional area of 1.17 cm ² . It
	was electrolyzed for 131 minutes
	with a constant current of 9.42 mA.
	The Li ⁺ ion was observed to move a
	distance of 2.08 cm. Calculate the
	transport number and mobility of
	Li ⁺ ion in this solution.
	Or
(iv)	The standard potentials of the
	Cu2+/Cu and Cu+/Cu couples
	are +0.340 V and +0.522 V
	respectively. Evaluate $E_{0,2+10}^{\circ}$.

(c)

(v) What is the pH of 0.1 M CH₃COOH solution if dissociation constant of CH₃COOH is 1.6×10^{-5} ?

2

(vi) Discuss the construction of a calomel electrode. Explain the reaction taking place in the electrode. 3+2=5

To the state of the

was Borne of Company Charles

the Line of the American are and the first

Curryon (12 cm) (14 magner 2 cm i de Geori, kom i 40 soon 1 ooksbery Sootsoud Weillroom

the annual control but he can be fill take