3 (Sem-1/CBCS) STA HC 2

2019

STATISTICS

(Honours)

Paper: STA-HC-1026

(Calculus)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option for each of the following: 1×'
 - (a) According to L' Hospital's rule for indeterminate form $\frac{\infty}{\infty}$, under certain conditions imposed upon the functions f(x) and g(x), if $\lim_{x\to a} \frac{f'(x)}{g'(x)} = l$, then the

value of $\lim_{x\to a} \frac{f(x)}{g(x)}$ is

(i) l

(ii) $\frac{1}{l}$

(iii) O

20A/612

(Turn Over)

- (b) The gamma function $\int_{0}^{\infty} x^{m-1}e^{-x} dx$ converges for
 - (i) m > 1
 - (ii) m > 0
 - (iii) all real values of m
- (c) The order and degree of the differential equation

$$\frac{x+y\frac{dy}{dx}}{x\frac{dy}{dx}-y} = \sqrt{\frac{1-x^2-y^2}{x^2+y^2}}$$

is

- (i) 1, 1
- (ii) 1, 2
- (iii) 2, 1
- (d) Extreme value of a function exists if and only if the first non-zero derivative of the function is of ____ order.
 - (i) odd
 - (ii) even

20A/612

(Continued)

(3)

e) The 'integrating factor' (in context of obtaining solution of a differential equation) of the differential equation

$$\cos x \frac{dy}{dx} + y \sin x = 1$$

is

(i) $\log(\sec x)$ (ii) $\tan x$ (iii) $\sec x$

(f) Which of the following is not a linear partial differential equation?

(i)
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z + xy$$

(ii)
$$\frac{\partial^2 z}{\partial x^2} = \left(1 + \frac{\partial z}{\partial y}\right)^{1/2}$$

(iii)
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = xyz$$

(g) The general solution of the linear differential equation

$$\frac{d^2y}{dx^2} + P_1 \frac{dy}{dx} + P_2 y = 0$$

when the auxiliary equation has imaginary roots is of the form

- (i) $y = ce^{\alpha x} \cos(\beta x + \varepsilon)$
- (ii) $y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$
- (iii) $y = (c_1 + c_2 x)e^{\alpha x}$

Here, the symbols have their usual meanings.

20A/612

(Turn Over)

- 2. Answer the following questions:
 - (a) If $x = r\cos\theta$ and $y = r\sin\theta$, then find the value of $\frac{\partial^2 \theta}{\partial x \partial y}$.
 - (b) Form the partial differential equation by eliminating the arbitrary constants a and b from

$$(x-a)^2 + (y-b)^2 + z^2 = \lambda^2$$

(c) Show that

$$\Gamma\left(\frac{7}{2}\right) = \frac{15}{8}\sqrt{\pi}$$

(d) Solve:

$$\left(\frac{y^2z}{x}\right)p+xzq=y^2$$

- 3. Answer any three from the following questions: 5×3=15
 - (a) Find the point of maxima and the minima of the function $x^3 - 12x^2 + 45x$ in the interval [0, 7].
 - (b) Solve:

$$(x\cos x)\frac{dy}{dx} + y(x\sin x + \cos x) = 1$$

(5)

(c) Use the relation between gamma and beta function to show that

$$\int_{0}^{1} x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} dx = \frac{3\pi}{128}$$

(d) Evaluate the limit:

$$\lim_{x\to 0}\frac{(1+x)^{\frac{1}{x}}-e}{x}$$

(e) Solve the differential equation

$$\left(\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4\right)y = x^2$$

when
$$x = 0$$
, $y = \frac{3}{8}$ and $\frac{dy}{dx} \cdot y = 1$.

Answer the following questions:

10×3=30

6

(i) Evaluate:

$$\frac{1}{\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2}e^{e^x}$$

(ii) Solve:

$$\frac{d^2y}{dx^2} = \cos nx$$

20A/612

(Continued)

 $2 \times 4 = 8$

20A/612

(Turn Over)

Or

(b) Define 'Jacobian'. If
$$u = \frac{x^2 + y^2 + z^2}{x}$$
, $v = \frac{x^2 + y^2 + z^2}{y}$ and $w = \frac{x^2 + y^2 + z^2}{z}$, then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. $3+7=10$

5. (a) Find the maximum and minimum values of $x^2 + y^2 + z^2$ subject to the conditions

$$\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1$$
 and $z = x + y$ 10

Or

- (b) (i) Solve the Clairaut's equation: 5 $y = px + p p^2, \text{ where } p = \frac{dy}{dx}$
 - (ii) Show that the differential equation

$$xdx + ydy = \frac{a^2(xdy - ydx)}{x^2 + y^2}$$

is exact and hence solve it.

(7)

- (a) (i) Evaluate the integral: 5 $\iint_{R} (x^{2} + 2y) dxdy, R = [0, 1; 0, 2]$
 - (ii) Prove that a necessary and sufficient condition that the differential equation Mdx + Ndy = 0 be exact is that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
 5

(b) (i) Find the first- and secondorder partial derivatives of $z = x^3 + y^3 - 3axy$ and verify that

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$$
 2+3=5

(ii) Given $\int_{0}^{\infty} \frac{xp^{-1}}{1+x} dx = \frac{\pi}{\sin p\pi}$, show that

$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$$
, when 0

20A/612

(Continued)

5

20A-1500/612

3 (Sem-1/CBCS) STA HC 2