Show that for t-distribution with n d.f. mean deviation about mean is given by

 $\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)$ $\sin\sqrt{\pi} \Gamma\left(\frac{n}{2}\right)$ so $\sin\sqrt{\pi} \Gamma\left(\frac{n}{2}\right)$ $\sin^2 \theta$

- 6. (a) (i) Derive the expression for the standard error of the mean of a random sample of size n and sample proportion.
 - (ii) Write down some familiar applications of order statistics. 5

from U(0,1) population, mean of

(b) (i) If $n_2 \to \infty$ in $F(n, n_2)$ distribution, then show that $\chi^2 = n_1 F$ follows

Chi-square distribution with n_1

distribution is used to test the difference between the means of two samples which are paired together.

Total number of printed pages-8

3 (Sem-3/CBCS) STA HC 1

10 avor 2021 to anon (ui)

(nondo toerros (Held in 2022)

in /b If X and SOITSITATS ependent Chi-

square vari(erwonoH), and no degrees

Paper: STA-HC-3016

(Sampling Distributions)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 7 = 7$
 - (a) For random sample of size 2 drawn from $N(0, \sigma^2)$ population, the expected value of the smallest order statistic is

variate with
$$n$$
 d.f., $t^2 \sigma n$ for large N , $t^2 \sigma n$ is distributed $a \pi \sqrt{n}$ is distributed $a \pi \sqrt{n}$

(ii)
$$-\frac{\sigma}{\sqrt{\pi}}$$
 (ii) $N(\sqrt{2n}, 1)$

(iii)
$$2\sigma^2$$
 3-29000 beining to reduce that

- (iv) None of the above (Choose the correct option)
- (b) If X and Y are two independent Chisquare variates with n_1 and n_2 degrees of freedom respectively, then $u = \frac{X}{Y}$ follows

(i)
$$\beta_2\left(\frac{n_1}{2},\frac{n_2}{2}\right)$$

- (ii) $\beta_1(n_1, n_2)$
- (iii) F-distribution
- (iv) None of the above (Choose the correct option)
- (c) If X is distributed as a Chi-square variate with n d.f., then for large N, $\sqrt{2x}$ is distributed as
 - (i) N(2n, 1)
 - (ii) $N(\sqrt{2n},1)$

nouslu (iii)
$$N(\sqrt{2n}, n)$$
 on sportion of $N(\sqrt{2n}, n)$

- (iv) None of the above (Choose the correct option)
- (d) For testing the hypothesis 'population correlation ratio is zero'. The test statistics is

(i)
$$\frac{\eta^2}{1-\eta^2} \cdot \frac{N-h}{h-1}$$
 88.5 ± q (iii)

(ii)
$$\frac{1-\eta^2}{\eta^2}$$
 $\frac{N-h-1}{h}$ once (iii)

(notice to
$$\frac{\eta^2}{1-\eta^2} \cdot \frac{N^2 h^2}{h^2}$$
)

The moment generating function (p)

iv) None of the above

(noise the correct option)

(e) If a statistic t follows students t-distribution with n d.f., then t^2 follows

noisonul gaiter neg taslum (Fill in the blank)

mean and variance.

95% confidence limits for population (f) proportion are

(iii) None of
$$\frac{pa}{n}$$
 above $\frac{pa}{n}$ option (iii)

(d) For testing the hypothesis population correlation $\frac{pq}{n}$ is zero'. The test statistics is $\frac{pq}{n}$ 85.2 ± $\frac{pq}{n}$ (ii)

(iii)
$$p \pm 2.33 \sqrt{\frac{pq}{n}} \cdot \frac{q}{q-1}$$

(iv) None of the above

(Choose the correct option)

The moment generating function of t-distribution does not exist.

(noitgo isomos ent secon (State True or False)

3 (Sem-3/CBCS) STA HC 1/G 3 A

- Answer the following questions: $2 \times 4 = 8$
 - (a) Explain the terms 'level of significance' and 'critical region'.
 - (b) Obtain cumulant generating function of Chi-square distribution. Hence obtain mean and variance.

(c) A random sample of size 4 is drawn from the discrete uniform distribution

$$P(X=x)=\frac{1}{6}$$
; $x=1, 2, 3, 4, 5, 6$

Obtain the distribution of the smallest and largest order statistic.

(d) Let X_1, X_2, \ldots, X_n be a random sample from N(0, 1). Let us further

define
$$\overline{X}_k = \frac{1}{k} \sum_{i=1}^k X_i$$
 and

lo maem nouble of
$$X_n = \frac{1}{n-k} \sum_{i=1}^{n} X_i$$
 suppose a $i = 1 + k = 1 + k = 1$ in

noisely of k = k+1Find the distribution of k = k+1

and no are drawn from the two

in socie
$$k \overline{X}_k^{-2} + (n-k) \overline{X}_{n-k}^{-2}$$
 socie sidt

- 3. Answer any three of the following 51=8×6 that the sample standard: enoitsaup
- (a) Derive the joint probability distribution of $X_{(r)}$ and $W_{rs} = X_{(s)} - X_{(r)}$; (r < s)based on a random sample of size n from the exponential distribution with parameter a.

- (b) If X has a F-distribution with vi and degrees of freedom, find the $P(X=x)=\mathbf{1}; x=1,2,3,4,5,6$ distribution of $\frac{1}{x}$. Obtain the distribution of the smallest
 - Show that the m.g.f. of $Y = \log \chi^2$, where x2 x follows x Chi-square distribution with n d.f. is

$$M_Y(t) = \frac{2^t \Gamma\left(\frac{n}{2} + t\right)}{\Gamma(n/2)}$$
 and above

- Suppose a person is interested in testing the equality of two population standard deviations, say σ_1 and σ_2 . For this purpose two samples of sizes n_1 and no are drawn from the two populations respectively and suppose TIESX that the sample standard deviations are S_1 and S_2 respectively.
- Explain how you would test the (r<s) hypothesis $H_0: \sigma_1 = \sigma_2$. Also discuss diw no test of H_0 when both n_1 and n_2 are large.

Show that for large degrees of freedom, t-distribution tends to standard normal distribution.

10×3=30 Answer the following questions:

- Explain clearly the procedure generally followed in testing of a hypothesis. Also point the difference between one-tail and two-tail tests.
 - Show that in odd sample of size n from U(0,1) population, mean of the distribution of median is $\frac{1}{2}$.

- (b) Derive the probability density function of the student's t-distribution with ν d.f. and hence find its mean and variance.
- Show that for large d.f., the Chisquare distribution tends to the normal distribution.