(g) Suppose that a function f is analytic throughout a disc $|z-z_0| < R_0$ centred at z_0 and with radius R_0 . Then prove that f(z) has the power series representation

representation

via nigami bina
$$\infty$$
 are the tail avoid ment

nname $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$, as $(|z-z_0| < R_0)$

tail work on $z = 0$

where
$$a_n = \frac{f^n(z_0)}{|n|}$$
, $(n = 0, 1, 2,)$

(h) State and prove Laurent's theorem.

conjugate f(z) = u(x, y) - iv(x, y) are

interior to the other prove that

$$f(z_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(z)}{z_0} dz.$$

(f) State and prove Liouville's theorem.

Total number of printed pages-8 supe of [d]

3 (Sem-6/CBCS) MAT HC 1

2022

MATHEMATICS +

(Honours) None of the abov

Paper: MAT-HC-6016

noitonul at (Complex Analysis) 100 A

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions. fiv) None of the above

- 1. Answer any seven questions from the $1 \times 7 = 7$ following: (d) The value of Log (-ei) is
 - If c is any nth root of unity other than unity itself, then value of $1 + c + c^2 + \dots + c^{n-1}$ is
 - $2n\pi$
 - (iv) None of the above

(Choose the correct answer)

- The square roots of 2i is
 - (i) $\pm (1+i)$

 - (iii) $\pm \frac{1}{\sqrt{2}} \left(1 i\sqrt{2}\right)$
 - None of the above (Choose the correct answer)
- A composition of continuous function is
 - discontinuous
 - itself continuous
 - pointwise continuous
 - (iv) None of the above (Choose the correct answer)
 - The value of Log (-ei) is

 - (iii) $1-\frac{\pi}{2}i$
 - (iv) None of the above (Choose the correct answer)

- The power expression of cosz is
 - What is extended $\frac{e^z + e^{-z}}{c}$ What is Jordan $a_{ij} = e^{iz} + e^{-iz}$
- Answer any four oxi-stings from the
 - (iv) None of the above (Choose the correct answer)
 - The Cauchy-Riemann equation for analytic function f(z) = u + iv is
 - (i) $u_x = v_y$, $u_y = -v_x$ events
 - (ii) $u_x = -v_y$, $u_y = v_x$
 - (iii) Use definition $0 = v_{yy} + v_{yy} = 0$
 - (iv) None of the above (Choose the correct answer)
 - If w(t) = u(t) + iv(t), then $\frac{d}{dt}[w(t)]^2$ is equal to
 - 2[u(t)+iv(t)]
 - a (ii)
 - then prove that (z) with throughout (t) (t) (t)
 - None of the above (Choose the correct answer)

- (h) What is Laplace's equation? T
- (i) What is extended complex plane?
- (j) What is Jordan arc?
- 2. Answer **any four** questions from the following:
 - evods and to anow i i write principal value of $arg\left(\frac{i}{-1-i}\right)$.
 - (b) If $f(z) = x^2 + y^2 2y + i(2x 2xy)$, where z = x + iy, then write f(z) in terms of z.
 - (c) Use definition to show that $\lim_{z \to z_0} \overline{z} = \overline{z}_0$ and $\lim_{z \to z_0} \overline{z} = \overline{z}_0$ (a)
 - (d) Find the singular point of

(a) If
$$w(t) = u(t) + (t)u(t) = u(t)$$
 is $f(z) = \frac{z^2 + 3}{(z+1)(z^2 + 5)}$ of least $f(z) = \frac{z^2 + 3}{(z+1)(z^2 + 5)}$.

(e) If f'(z) = 0 everywhere in a domain D, then prove that f(z) must be constant throughout D.

- Evaluate f'(z) from definition, where
 - (g) If $f(z) = \frac{z}{\overline{z}}$, find $\lim_{z \to 0} f(z)$, if it exists.
- (h) Write the function $f(z) = z + \frac{1}{z}(z \neq 0)$ in the form $f(z) = u(r, \theta) + iv(r, \theta)$.
- - (a) If z_1 and z_2 are complex numbers, then show that $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2.$
 - (b) Show that exp. $(2 \pm 3\pi i) = -e^2$.
 - (c) Sketch the set $|z-2+i| \le 1$ and determine its domain.
 - (d) Let C be the arc of the circle |z|=2from z=2 to z=2i, that lies in the 1st quadrant, then show that

$$\left| \int_C \frac{z-2}{z^2+1} \, dz \right| \le \frac{4\pi}{15}$$

- (e) Evaluate $\int_C \frac{dz}{z}$, where C is the top half of the circle |z|=1 from z=1 to z=-1.
- (f) If $f(z)=e^z$, then show that it is ar analytic function.
- (g) If $f(z) = \frac{z+2}{z}$ and C is the semi circle $z = 2e^{i\theta}$, $(0 \le \theta \le \pi)$, then evaluate $\int_C f(z) dz$.
- (h) Find all values of z such that $e^z = -2$.
- 4. Answer any three questions from the following:

 10×3=30
 - (a) State and prove Cauchy-Riemann equations of an analytic function in polar form.
 - (b) Suppose that f(z) = u(x, y) + iv(0, y), (z = x + iy) and $z_0 = x_0 + iv_0, \text{ then prove that } v_0 = u_0 + iv_0, \text{ then } v(x, y) + iv(x, y) = u_0$ and $\lim_{(x, y) \to (x_0, y_0)} v(x, y) = v_0 \text{ then } v(x, y) = v_0 \text{ then } v(x, y) = v_0 \text{ and conversely.}$

(c) If the function f(z) = u(x, y) + iv(x, y) is defined by means of the equation

$$f(z) = \begin{cases} \frac{\overline{z}^e}{z}, & \text{when } z \neq 0 \\ 0, & \text{when } z = 0, \end{cases}$$

then prove that its real and imaginary parts satisfies Cauchy-Riemann equations at z=0. Also show that f'(0) fails to exist.

- (d) If the function f(z) = u(x, y) + iv(x, y) and its conjugate $\bar{f}(z) = u(x, y) iv(x, y)$ are both analytic in a domain D, then show that f(z) must be constant throughout D.
- (e) If f be analytic everywhere inside and on a simply closed contour C, taken in the positive sense and z_0 is any point interior to then prove that

$$f(z_0) = \frac{f(z)}{2\pi} dz.$$

(f) State and prove Liouville's theorem.