ধৰা হ'ল
$$\overrightarrow{v} = \langle 2, 3 \rangle$$
, $\hat{e}_1 = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$

আৰু
$$\hat{e}_2 = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$

 \overrightarrow{v} ভেক্টৰৰ $\overset{\circ}{e_1}$ আৰু $\overset{\circ}{e_2}$ ৰ দিশত ভেক্টৰ উপাংশ আৰু স্কেলাৰ উপাংশ উলিওৱা।

Find the vector equation of a line in 3-space that passes through the points P_1 (2, 4, -1) and P_2 (5, 0, 7).

> $P_1(2,4,-1)$ আৰু $P_2(5,0,7)$ বিন্দুৰ মাজেৰে যোৱা ৰেখাডালৰ 3-space ত ভেক্টৰ সমীকৰণ উলিওৱা।

Total number of printed pages-12

1 (Sem-4) MAT 3

2025

MATHEMATICS

Paper: MAT0400304

(Analytical Geometry)

Full Marks: 60

Time: 2½ hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions: $1 \times 8 = 8$ তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ
 - Find the form of the equation 3x + 4y = 5 when the origin is shifted to the point (3, -2). মূলবিন্দু (3, -2) লৈ স্থানান্তৰ কৰিলে 3x + 4y = 5সমীকৰণৰ ৰূপ কি হ'ব উলিওৱা।
 - (b) Under what condition the equation $ax^2 + 2hxy + by^2 = 0$ represents a pair of perpendicular straight lines? কি চৰ্ত সাপেক্ষে $ax^2 + 2hxy + by^2 = 0$ সমীকৰণে দুড়াল পৰস্পৰ লম্ব ৰেখা প্ৰতিনিধিত্ব কৰিব?

12

- (c) Write true **or** false (শুদ্ধ নে অশুদ্ধ লিখা):
 The degree of an equation is an invariant under orthogonal transformation.
 লাম্বিক ৰূপান্তৰ সাপেক্ষে এটা সমীকৰণৰ মাত্ৰা অপৰিবৰ্তনীয়।
- (d) Find the nature of the conic represented by polar equation $\frac{1}{r} = 8 + 5\cos\theta$. ধ্ৰুৱীয় সমীকৰণ $\frac{1}{r} = 8 + 5\cos\theta$ ই নিৰ্দেশ কৰা শাংকৱটো কি হয় উলিওৱা।
- (e) The axes are rotated through an angle of 60° without change of origin. The co-ordinates of a point are $\left(4,\sqrt{3}\right)$ in the new system. Find the co-ordinates in the old system. মূলবিন্দু পৰিৱৰ্ত্তন নকৰাকৈ অক্ষন্ত্ৰয়ক 60° কোণত ঘূৰোৱা হ'ল। নতুন অক্ষ সাপেক্ষে এটা বিন্দুৰ স্থানাংক $\left(4,\sqrt{3}\right)$ । পুৰণি অক্ষ সাপেক্ষে বিন্দুটোৰ স্থানাংক উলিওৱা।
- (f) Write down the equations of the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ পৰাবৃত্তটোৰ অনন্তস্পৰ্শী বেখাৰ সমীকৰণ লিখা।

- (g) Find the norm of the vector $\overrightarrow{v} = -3\hat{i} + 2\hat{j} + \hat{k}$
 - $\overrightarrow{v}=-3 \hat{i} + 2 \hat{j} + \hat{k}$ ভেক্টৰৰ নৰ্ম (norm) উলিওৱা।
- (h) Find the volume of the parallelopiped whose adjacent edges are

$$\overrightarrow{u} = 3\widehat{i} - 2\widehat{j} - 5\widehat{k}, \quad \overrightarrow{v} = \widehat{i} + 4\widehat{j} - 4\widehat{k},$$

$$\overrightarrow{w} = 3\hat{j} + 2\hat{k}.$$

$$\overrightarrow{u} = 3\hat{i} - 2\hat{j} - 5\hat{k}$$
, $\overrightarrow{v} = \hat{i} + 4\hat{j} - 4\hat{k}$,

$$\overrightarrow{w}=3\overrightarrow{j}+2\overrightarrow{k}$$
 সংলগ্ন বাহুবিশিষ্ট

parallelopiped টোৰ ঘনমান উলিওৱা।

- 2. Answer the following questions: 2×6=12 তলৰ দিয়াবোৰৰ প্ৰশ্নসমূহৰ উত্তৰ লিখাঃ
 - (a) Reduce the equation 2x + 3y 6 = 0 in the form lx + my = 0 by choice of new origin on the x-axis.

$$x$$
 -অক্ষত নতুন মূলবিন্দু স্থিৰ কৰি $2x + 3y - 6 = 0$
সমীকৰণটো $lx + my = 0$ আকাৰলৈ লঘুকৃত কৰা।

(b) For what value of k does the equation xy + 5x + ky + 15 = 0 may represent a pair of straight lines.

- k ৰ কি মানৰ বাবে xy + 5x + ky + 15 = 0সমীকৰণটোই দুডাল ৰেখাখণ্ড নিৰ্দেশ কৰিব?
- (c) Find the equation of the diameter of the ellipse $3x^2+4y^2=5$ conjugate to y+3x=0.

 $3x^2+4y^2=5$ উপবৃত্তটোৰ y+3x=0 ব্যাসৰ সংযোজক (conjugate) ব্যাসডালৰ সমীকৰণ উলিওৱা।

(d) Find the equation of the cone whose vertex is the origin and which passes through the curve of intersection of the plane lx + my + nz = p and the surface $ax^2 + by^2 + cz^2 = 1$.

মূলবিন্দু শীৰ্ষবিন্দুবিশিষ্ট আৰু lx + my + nz = p সমতল আৰু $ax^2 + by^2 + cz^2 = 1$ পৃষ্ঠৰ বক্ৰীয় ছেদাংশৰ মাজেৰে যোৱা শংকুটোৰ সমীকৰণ উলিওৱা।

(e) A force $\overrightarrow{F} = 3\hat{i} - \hat{j} + 2\hat{k}$ lb is applied to a point that moves on a line from P(-1, 1, 2) to Q(3, 0, -2). If the distance is measured in feet, how much work is done?

 $\overrightarrow{F}=3\hat{i}-\hat{j}+2\hat{k}$ lb বল প্রয়োগ কৰি এটা বিন্দু P(-1,1,2) ৰ পৰা Q(3,0,-2) লৈ স্থানান্তৰ কৰা হ'ল। দূৰত্বৰ মাপ ফুটত (feet) হ'লে কিমান কাৰ্য্য সম্পাদন কৰা হ'ল উলিওৱা।

- (f) Find the centre and radius of the sphere $x^2 + y^2 + z^2 2x 4y + 8z + 17 = 0$. $x^2 + y^2 + z^2 2x 4y + 8z + 17 = 0$ গোলকটোৰ কেন্দ্ৰবিন্দু আৰু ব্যাসাৰ্দ্ধ উলিওৱা।
- 3. Answer **any four** parts : 5×4=20 *যিকোনো চাৰিটা* অংশৰ উত্তৰ কৰা ঃ
 - (a) Prove that a + b and $ab h^2$ obtained from $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ remain invariant under transformation of rotation.

প্ৰমাণ কৰা যে, $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ ৰ পৰা প্ৰাপ্ত a + b আৰু $ab - h^2$ ৰাশি দুটা ঘূৰ্ণীয় ৰূপান্তৰ সাপেক্ষে অপৰিবৰ্ত্তনীয় হৈ থাকে।

(b) Prove that the straight lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ will be equidistant from origin if

$$f^4 - g^4 = c \left(b f^2 - a g^2 \right).$$

প্ৰমাণ কৰা যে, $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ সমীকৰণে প্ৰতিনিধিত্ব কৰা ৰেখা দুডাল মূলবিন্দুৰ পৰা সমদূৰত্বত থাকিব যদিহে

$$f^4 - g^4 = c \Big(bf^2 - ag^2 \Big).$$

- If PSP' and QSQ' are two perpendicular focal chords of a conic, prove that $\frac{1}{PP'} + \frac{1}{OO'} = a \text{ constant.}$
 - PSP^\prime আৰু QSQ^\prime এটা শাংকৱৰ দুডাল পৰস্পৰ লম্ব নাভীয় জ্যা হ'লে প্ৰমাণ কৰা যে, $\frac{1}{pP'} + \frac{1}{OO'} = ধ্ৰুৱক$
- Show that the line lx + my = n is a tangent to the parabola $y^2 = 4ax$ if $ln = am^2$.
 - দেখুওৱা যে, lx + my = n ৰেখাডাল $y^2 = 4ax$ অতিবৃত্তৰ স্পৰ্শক হব যদিহে $ln=am^2$.
- Find the coordinates of the centre and radius of the circle -3+2=5x + 2y + 2z = 15, $x^2 + y^2 + z^2 - 2y - 4z - 11 = 0.$ x + 2y + 2z = 15, $x^2 + u^2 + z^2 - 2u - 4z - 11 = 0$ বৃত্তৰ কেন্দ্ৰবিন্দুৰ স্থানাংক আৰু ব্যাসাৰ্দ্ধ উলিওৱা।
- Find the equation of the right circular cylinder of radius 5 whose axis passes through (1, 2, 3) and is parallel to $\frac{x-4}{2} = \frac{y-3}{1} = \frac{z-2}{2}$.

- 5 ব্যাসাৰ্দ্ধবিশিষ্ট এটা সোঁ বৃত্তাকাৰ চিলিণ্ডাৰৰ সমীকৰণ উলিওৱা যাৰ অক্ষ (1, 2, 3) বিন্দুৰ মাজেৰে যায় আৰু $\frac{x-4}{2} = \frac{y-3}{1} = \frac{z-2}{2}$ (ৰখাৰ সমান্তৰাল হয়।
- Find the orthogonal projection of $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ on $\overrightarrow{b} = 2\overrightarrow{i} + 2\overrightarrow{j}$

Also find the vector component of \overrightarrow{v} 3+2=5orthogonal to \vec{b} . $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ ভেক্টৰৰ $\overrightarrow{h} = 2\overrightarrow{i} + 2\overrightarrow{j}$ ৰ ওপৰত

লম্বীয় প্ৰক্ষেপ উলিওৱা। লগতে $\stackrel{
ightarrow}{b}$ ৰ লম্ব হোৱা $\stackrel{
ightarrow}{v}$ ভেক্টৰৰ ভেক্টৰ উপাংশ উলিওৱা।

Show that the lines $L_1: x = 2 + t, y = 2 + 3t, z = 3 + t$ L_2 : x = 2 + t, y = 3 + 4t, z = 4 + 2tintersect and find the point of 3+2=5intersection.

দেখুওৱা যে

$$L_1: x = 2 + t, y = 2 + 3t, z = 3 + t$$

 $L_2: x = 2 + t, y = 3 + 4t, z = 4 + 2t$

ৰেখা দুডালে পৰস্পৰক ছেদ কৰে আৰু ছেদবিন্দুৰ স্থানাংক উলিওৱা।

4. Answer any two parts:

10×2=20

যিকোনো দুটা অংশৰ উত্তৰ কৰাঃ

(a) (i) Find the equations of the following when ax + by + c = 0 and bx - ay + d = 0 are considered as axes of x and y respectively

I.
$$(bx - ay + d)^2 = a^2 + b^2$$

II.
$$(ax + by + c) \cdot (bx - ay + d) = a^2 + b^2$$
5

ax + by + c = 0 আৰু bx - ay + d = 0ৰেখা দুডালক ক্ৰমে x অক্ষ আৰু y অক্ষ হিচাপে লৈ তলৰ সমীকৰণ কেইটা কি হব উলিওৱা —

I.
$$(bx - ay + d)^2 = a^2 + b^2$$

II.
$$(ax + by + c) \cdot (bx - ay + d) = a^2 + b^2$$

- (ii) Find the equations of the bisectors of the angles between the lines $ax^2 + 2hxy + by^2 = 0$.
 - $ax^2 + 2hxy + by^2 = 0$ ৰেখাদ্বয়ৰ মাজৰ কোণৰ সমন্বিখণ্ডকৰ সমীকৰণ উলিওৱা।

- (b) (i) Prove that the tangents at the ends of a pair of conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ form a parallelogram of constant area. 5 প্রমাণ কৰা যে, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ উপবৃত্তৰ এযোৰ সংযোজক ব্যাসৰ (conjugate diameters) প্রান্তবিন্দুত টনা স্পর্শকবোৰে এটা সামন্তৰিক সৃষ্টি কৰে যাৰ আয়তন এটা ধ্রুৱক হয়।
 - (ii) The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the co-ordinate axes in A, B, C. Prove that the equation to the cone generated by lines drawn from O to meet circle ABC is

$$\left(\frac{b}{c} + \frac{c}{b}\right)yz + \left(\frac{c}{a} + \frac{a}{c}\right)zx + \left(\frac{a}{b} + \frac{b}{a}\right)xy = 0.$$

x/a + y/b + z/c = 1 সমতলে অক্ষত্ৰয়ক A,B,C বিন্দৃত ছেদ কৰে। প্ৰমাণ কৰা যে, মূল বিন্দু O ৰ পৰা ABC বৃত্তলৈ অংকণ কৰা ৰেখা সমূহে উৎপন্ন কৰা শংকুৰ সমীকৰণ

$$\left(\frac{b}{c} + \frac{c}{b}\right)yz + \left(\frac{c}{a} + \frac{a}{c}\right)zx + \left(\frac{a}{b} + \frac{b}{a}\right)xy = 0$$

(c) State the type of the conic and reduce it to canonical form:

$$11x^2 - 4xy + 14y^2 - 58x - 44y + 71 = 0.$$

2+8=1 O

তলৰ শাংকৱটোৰ প্ৰকাৰ উল্লেখ কৰা আৰু ইয়াক canonical ৰূপলৈ সৰলীকৃত কৰাঃ

$$11x^2 - 4xy + 14y^2 - 58x - 44y + 71 = 0$$

(d) (i) A plane passes through a fixed point (p, q, r) and cuts the axes in A, B, C. Show that the locus of the centre of the sphere OABC is

$$\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2$$

এখন সমতল এটা নিৰ্দিষ্ট বিন্দু (p,q,r) ৰ মাজেৰে যায় আৰু অক্ষক A,B,C বিন্দুত ছেদ কৰে। প্ৰমাণ কৰা যে OABC গোলকৰ কেন্দ্ৰৰ সঞ্চাৰপথ হ'ল

$$\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2$$

10

(ii) Find the cylindrical co-ordinates of a point whose cartesian co-ordinates are $(1,\sqrt{3},2)$.

এটা বিন্দুৰ কাৰ্টেজীয় স্থানাংক $\left(1,\sqrt{3},2\right)$ হ'লে বিন্দুটোৰ নলীয় স্থানাংক উলিওৱা।

(iii) Find the distance between the points whose spherical coordinates are

$$\left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{6}\right)$$
 and $\left(2, \frac{\pi}{3}, \frac{\pi}{3}\right)$.

$$\left(\sqrt{2},\frac{\pi}{4},\frac{\pi}{6}\right)$$
 আৰু $\left(2,\frac{\pi}{3},\frac{\pi}{3}\right)$

গোলকীয় স্থানাংক বিশিষ্ট বিন্দু দুটাৰ মাজৰ দূৰত্ব উলিওৱা।

(e) (i) Find the angle between a diagonal of a cube and one of it's edge.

এটা ঘনকৰ এডাল কৰ্ণ আৰু এটা দাঁতি (edge)ৰ মাজৰ কোণটো উলিওৱা।

(ii) Let
$$\overrightarrow{v} = \langle 2, 3 \rangle$$
, $\hat{e}_1 = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$

and
$$\hat{e}_2 = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$

Find the scalar components and vector components of \overrightarrow{v} along \hat{e}_1

and
$$\hat{e}_2$$
.