### 2(Sem-8/FYUGP)BNC(A)/DSCI

#### 2025

## **Computer Science**

(Discipline Specific Core)

**Paper Name: Digital Logic Fundamentals** 

Paper Code: BCA-DSC-145

Full Marks: 60

Time: Two and Half Hours

(The figures in the margin indicate full marks for the questions)

Answer in English

## 1. Answer the following questions as directed:

1x7 = 7

- a) Write the full form of ASCII.
- b) What is a Flip Flop?
- c) What is an inverter?
- d) Which logic gate is known as Universal Gate and why?
- e) Write the De-Morgan theorem.
- f) What is combinational circuit
- g) What do you mean by binary numbers.

# 2. Answer any four of the following questions:

2x4 = 8

- a) What is ROM?
- b) What do you mean by minterm and maxterm?
- c) Convert (100101)<sub>2</sub> to decimal number.
- d) What is shift register?
- e) What is binary number system?

## 3. Answer the following questions (any three):

5x3=15

- a) Explain multiplexer with logic diagram.
- b) Explain Full Adder with truth table and circuit diagram.
- c) Briefly explain the J-K flip-flop with circuit diagram.
- d) Simplify the Boolean function using K-Map,  $F(W,X,Y,Z) = \sum (1,3,7,11,15)$  with Don't care  $d(w,x,y,z) = \sum (0,2,5)$
- e) Find the complement of Boolean functions.

(i) 
$$F1 = x' yz' + x' y'z$$
 (ii)  $F2 = x(y'z' + yz)$ 

# 4. Answer any three of the following questions: 10x3=30

- a) What is counter? Design a 3-bit binary counter and give logic diagram.
- b) What is digital system? Write characteristics of digital system.
- c) What is an Encoder? Explain Octal to Binary Encoder with proper diagram and function table.
- d) Explain different postulates and basic theorems of Boolean algebra with example.
- e) For a 3-bit shift register explain the operation for serial in serial out shift.

\*\*\*\*\*