DEPARTMENT OF PHYSICS B. N. COLLEGE (AUTONOMOUS), DHUBRI

Syllabus for B.Sc. Honours in Physics (Four Year Degree Course)

Approved by the Board of Studies in Physics held on **21.12.2024**

SEMESTER I

Name of the Department: Physics Semester: I Name of the Paper: Mathematical Physics I and Mechanics Paper Type: Core Paper Code: Credit:4 (Theory:3 + Practical:1), Hours:45 Hours (Theory)+30 Hours (Practical) Lecture:3 Credits; Practical:1 Credit; Tutorial: 0 Full Marks:100

Course Objectives:

This course provides foundational knowledge of vector calculus, curvilinear coordinates, and mechanics. It covers the fundamental laws of motion, conservation principles, and forces in non-inertial systems. The course develops problem-solving skills and analytical thinking to understand physical systems mathematically and prepares students for advanced physics courses.

Course Outcome:

After successful completion of the course, the students will-
CO1 Able to understand the calculus of vectors and concept of curved spaces which play central
roles in developing insight of the theories of physics.
LO1.1 Solve problems involving vector derivatives and integrals in Cartesian and
curvilinear coordinates.
LO1.2 Apply vector calculus concepts to analyse physical phenomena like fields and
potentials.
CO2 Able to understand about the basic concepts of mechanics by parallel studies of linear
dynamics and rotational dynamics.
LO2.1 Analyse the principles of linear and rotational dynamics.
LO2.2 Solve mechanical problems involving forces and motion in physical systems.
CO3 Understand the concept of frame of reference, importance of relative transformations and
invariance of laws of Physics.
LO3.1 Apply Galilean transformations to analyse relative motion.
LO3.2 Demonstrate invariance of physical laws across inertial frames.
CO4 Understand the consequences of a non-inertial frame in our real physical world.
LO4.1 Predict the effects of Coriolis and centrifugal forces in rotating systems.
LO4.2 Analyse physical scenarios in non-inertial frames.
CO5 Able to understand about conservative and non-conservative force in detail.
LO5.1 Explain the characteristics and differences between conservative and non-
conservative forces.
LO5.2 Analyse how conservative and non-conservative forces affect the work and energy in
a physical system.
CO6 Able to understand how various elastic moduli can be determined.
LO6.1 Measure elastic constants of materials through experimental setups.
LO6.2 Analyse material properties using stress-strain relationships.
Main Syllabus:

Allotted Class Unit No. Syllabus Hour Marks Theory **Part A: Mathematical Physics** Product of three vectors. Scalar and vector fields. Derivatives of vector functions, Directional derivative. Gradient of a scalar Unit I field. Divergence and curl of a vector field. Laplacian operator. Vector 12 20 Vector identities. Calculus Vector integration- Line, Surface and Volume integrals. Gauss's divergence theorem and Stokes's theorem, Greens theorem. Unit II Orthogonal Curvilinear Coordinates. Derivation of Gradient, 6 10

0 11		I		
Curvilinear coordinates	Divergence, Curl and Laplacian operator in Cartesian, Spherical			
coordinates	and Cylindrical Coordinate Systems. Part B: Mechanics			
	Inertial frames. Galilean transformations; Galilean invariance.			
Unit III	Non-inertial frame and fictitious forces. Uniformly rotating			
Reference	frame. Laws of physics in rotating coordinate systems.	6	10	
frames	Centrifugal force. Coriolis force and its applications.			
Unit IV	Motion under central force. Two- body problem and its			
Gravitation	reduction to one body problem. Kepler's laws, Gravitational	_		
and Central	potentials and fields due to spherical body and shell.	5	8	
force motion				
	Dynamics of a system of particles. Centre of mass. Equation of			
Unit V	motion of centre of mass, conservation of linear and angular			
Conversation	momentum, conservation of energy, variable mass system.	4	7	
laws	Elastic and Inelastic collisions between particles. Centre of mass			
	and laboratory frames.			
Unit VI	Rigid body motion, fixed axis rotation, parallel and			
Dynamics of	perpendicular axes theorem. Moment of inertia of rectangular	5	8	
rigid bodies	lamina, disc, cylindrical and spherical bodies. Kinetic energy of	5	0	
figid bodies	rotation. Motion involving both translation and rotation.			
Unit VII	Work and kinetic energy theorem. Conservative and non-			
Work and	conservative forces. Potential energy. Force as a gradient of	3	5	
Energy	potential energy. Work and potential energy. Work done by non-	U	U	
8,	conservative forces.			
Unit VIII	Relation between elastic constants. Twisting torque on a			
Properties of	cylinder or wire. Cantilever. Kinematics of moving fluids:	4	7	
matter	Poiseuille's equation for flow of a liquid through a capillary			
	tube, equation of continuity, Bernoulli's theorem. Laboratory			
At least five evr	beriments from the following:			
1	y the motion of spring and calculate (a) spring constant and (b)			
	modulus.			
	rmine the moments of inertia of a cylinder about two different			
	symmetry by torsional oscillation method.			
	ermine the coefficient of viscosity of water by capillary flow			
	(Poiseuille's method).			
	rmine the Young's modulus of a material of a wire by Searle's	20	25	
apparati		30	25	
5. To deter	rmine the modulus of rigidity of a wire (static methods).			
6. To stud	y the variation of time period of a bar pendulum about different			
points o	f suspension and use the result to find the value of 'g' at a place.			
	rmine the value of 'g' using Kater's pendulum.			
	rmine the height of a building using a sextant.			
	ermine 'g' and velocity for a freely falling body using digital			
	echnique.			
Reference Bool		010 = -	F 1	
	1. Mathematical Methods for Physicists, G B Arfken, H J Weber, F E Harris, 2013, 7th Edn,			
	r. Mathematical Physics, Rajput and Yog Prakash, Pragati Prakasan,			
	oduction to ordinary differential equations, E. A. Coddington, 2009,		-	
3. Mathematical Physics-I, K.K. Pathak and S. Parasher, Vishal Publications, Jalandhar (Delhi).				

- 3. Mathematical Physics-I, K.K. Pathak and S. Parasher, Vishal Publications, Jalandhar (Delhi).
- 4. Mechanics, D.S. Mathur, S. Chand & Company Limited.
- 5. Analytical Mechanics, G.R. Fowles and G.L. Cassiday, Cengage Learning.
- 6. An introduction to Mechanics, D. Kleppner, R. J. Kolenkow, 1973, McGraw-Hill.
- 7. Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.

- 8. Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- 9. Mechanics, B.S.Agarwal, S. Chand and Company.
- 10. Mathematical physics and Mechanics, P.S. Hemne and C.L Arora, S. Chand & Company Limited, 2023

Name of the Department: Physics

Semester: I Name of the Paper: Physics Workshop Skills Paper Type: SEC Paper Code: Credit: 3 (Theory:2 + Practical:1), Hours: 30 Hours (Theory) +30 Hours (Practical) Lecture: 2 Credits; Practical: 1 Credit; Tutorial: 0 Full Marks: 75

<u>Course Objectives:</u> This course emphasizes hands-on skills in precision measurement using basic instruments and electrical wiring techniques. Students will gain confidence in using tools like Vernier calipers, screw gauges, and multimeters for practical applications. The course also focuses on safety measures in physics laboratories and introduces foundational concepts of electrical systems and connections.

Course Outcome:

After s	After successful completion of the course, the students will-				
	Able to	understand different measuring units and their conversion.			
CO 1	LO1.1	Demonstrate accurate conversions between different measurement units			
	LO1.2	Perform precision measurements using tools like Vernier calipers.			
		o understand instruments accuracy, precision, sensitivity, resolution, range, errors in ements and loading effects.			
CO 2	LO2.1	Analyze measurement errors and their impacts.			
	LO2.2	Assess the accuracy of tools like screw gauges and multimeters.			
	Develop	a comprehensive understanding of electrical wiring systems, including safety and practical			
	applicat	ions			
	LO3.1	Explain the principles of AC and DC power sources, including their generation,			
CO 3		distribution, and applications in electrical systems.			
	LO3.2	Analyze the roles and proper usage of tools like testers, multimeters, and screwdrivers in assembling and troubleshooting electrical circuits.			
	Underst	and and apply the theoretical principles of safety measures in physics laboratories and			
	practica	l applications.			
CO 4	LO4.1	Identify key hazard symbols and explain their significance in laboratory and workshop safety protocols.			
	LO4.2	Describe the theoretical basis of fire safety practices, including the appropriate use of extinguishers and preventive measures for electrical and chemical fires.			

Main Syllabus:

Unit No.	Syllabus	Class Hours	Allotted Marks
Unit I: Basic Measuring Instruments	Measuring units. conversion to SI and CGS. Familiarization with meter scale, Vernier calliper, Screw gauge, spherometer and their utility. Use of Sextant to measure height of buildings, mountains, etc. Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects.	9	15
Unit II: Electrical Wiring	Introduction to AC and DC electric power sources, Knowledge on electrical wiring equipment: electrical tester, multimeter, screw driver, plier, wire stripper, cutter etc, Single phase and three phase AC power supply system, Knowledge of Phase, Neutral and Ground or Earthing, Electrical circuit, Parallel and series connections, Use of fuse in an electrical circuit.	15	25
Unit III: Safety Measurements	Importance of safety measures, Hazard symbols, Physics laboratory safety, Chemistry laboratory safety, fire safety measurements, construction safety, wiring safety	6	10
	Laboratory		T
 To measure dimension of so of thin wire, thickness of m To measure height of buildin Wiring & connection of a Fan wiring with a regulated 	caliper, Screw Gauge and Spherometer. lid block, volume of cylindrical beaker/ glass, diameter etal sheet. ng, mountain using Sextant. light bulb with a switch. or and switch. fan and socket connection in a single board. emicals.	30	25

Reference Books:

- 1. Performance and design of AC machines M.G. Say, ELBS Edn.
- 2. New Engineering Technology, Lawrence Smyth/Liam Hennessy, The Educational Company of Ireland [ISBN: 0861674480].
- 3. Basic Electrical Engineering (I.T.I)-M.L. Anwani, Dhanpat Rai and Co.
- 4. A text book in Electrical Technology-B L Theraja -S. Chand and Company.

Name of the Department: Physics Semester: I Name of the Paper: Renewable Energy Source Paper Type: MDC Paper Code: Credit: 3 (Theory:3), Hours: 45 Hours (Theory) Lecture: 3 Credit; Practical: 0; Tutorial: 0 Full Marks: 75

Course Objectives:

This course explores non-conventional and alternate energy resources, emphasizing their environmental implications, solar energy applications, and potential contributions of ocean energy in energy generation. Students gain insights into renewable energy technologies and their societal impacts.

Course Outcome:

After	After successful completion of the course, the student will be able				
	To under	stand the need, importance and scope of non-conventional and alternate energy resources.			
CO1	LO1.1	Evaluate the significance of renewable energy in sustainable development.			
	LO1.2	Assess the scope and applications of non-conventional energy resources.			
	To expla	in the environmental aspects of renewable energy resources. In comparison with various			
CO2	conventi	onal energy systems, their prospects and limitations.			
02	LO2.1	Analyse the environmental benefits of renewable energy technologies.			
	LO2.2	Identify limitations and challenges of conventional energy systems.			
		rstand the use of solar energy and the various components used in energy production for			
CO3	applicati	ons like heating, cooling, desalination, power generation, etc.			
005	LO3.1	Explain the operation of solar heaters and photovoltaic cells.			
	LO3.2	Evaluate applications of solar energy in desalination and power generation.			
	Understa	and wind, tidal, and hydrogen energy systems.			
CO4	LO4.1	Explain the mechanics of wind turbines and tidal energy technologies.			
	LO4.2	Explain the mechanics of wind turbines and tidal energy technologies.			

Unit No.	Syllabus	Class Hours	Allotted Marks
Unit 1 Introduction	Energy concept-sources in general, their significance & necessity.Classification of energy sources: conventional and non-conventional energy sources, renewable and non-renewable energy, the need of renewable energy.	9	15
Unit 2 Solar Energy	Solar Energy Key features, its importance, applications of solar energy. Solar water heater, flat plate collector, solar distillation, solar cooker, solar greenhouses, solar cell -brief discussion of each. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. Merits & demerits of solar energy.	12	20

Unit 3 Other Alternative Energy Source	 Wind Energy Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. Tidal Energy Ocean Energy Potential against Wind and Solar, Tidal energy characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy. Fuel Cell Introduction to Fuel cells: Classification of fuel cells – H2; Operating principles, Zero Energy Concepts. Benefits of hydrogen energy, hydrogen production technologies (electrolysis method only), hydrogen energy storage, applications of hydrogen energy, problems associated with hydrogen energy, Hydrogen Fuel cell: Concept and Working principle, Bio fuel cell, Brief introduction about Proton Exchange membrane	18	30
Unit 4 Status of Renewable Energy	Impact of renewable energy on society, worldwide renewable energy availability, Present scenario of renewal energy in India, National Solar Mission, 500GW Nonfossil Fuel Target, Carbon neutrality target, Green Hydrogen Mission, National Wind-Solar Hybrid Policy	6	10

- 1. Energy Technology, S. Rao and Dr. B.B. Parulekar, Khanna Publication.
- 2. Solar energy, Subhas P. Sukhatme, Tata McGrawHill, 2nd Edition,1996.
- 3. Godfrey Boyle, "Renewable Energy: Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.
- Fundamentals and Applications of Renewable Energy, Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala, Tata McGrawHill, 1st Edition, 2020
- Renewable Energy & Green Technology: A reference book for graduate and post-graduate students of Indian Universities, Anjan K. Sahoo & Dr. S. P. Nanda, Notion Publication, 2021

SEMESTER II

Name of the Department: Physics Semester: II Name of the Paper: Wave Optics & Electricity and Magnetism Paper Type: Core Paper Code: Credit: 4 (Theory:3 + Practical: 1); Hours: 45 Hours (Theory)+ 30 Hours (Practical) Lecture: 3 Credits; Practical: 1 Credit; Tutorial:0 Full Marks: 100

Course Objectives:

This course provides a comprehensive understanding of wave optics, covering interference, diffraction, and polarization. It also introduces electricity and magnetism, focusing on electrostatic and magnetic fields, dielectric properties, and circuit analysis. Students gain both theoretical and practical skills essential for solving problems in optics and electromagnetism.

Course Outcome:

After	After successful completion of the course, the student will be able to				
Allel S	*				
		and the interference as superposition of waves from coherent sources and also understand			
		c principle of Young's double slit experiment, Fresnel's Biprism, Newton's Rings, Michelson			
CO1	interfero	ometer etc.			
COI	L01.1	Explain interference patterns using Fresnel's Biprism and measure wavelength with			
		Michelson interferometer.			
	LO1.2	Analyse optical path differences in interference patterns using Newton's Rings.			
	Underst	and the basic concept of diffraction, Fresnel and Fraunhofer diffraction from a slit.			
CO2	LO2.1	Evaluate Fresnel diffraction patterns and calculate diffraction effects on light intensity.			
	LO2.2	Use Fraunhofer diffraction principles to assess resolving power of gratings.			
	Underst	and the concept of polarisation of light, the production and detection of polarized light.			
CO3	LO3.1	Analyse polarization by reflection and refraction and detect polarized light.			
	LO3.2	Apply Nicol prism to create and study elliptically polarized light.			
	To apply	y of Kirchhoff's law in different circuits, and application of network theorem in different			
COA	circuits				
CO4	LO4.1	Solve circuit problems using Kirchhoff's laws for voltage and current.			
	LO4.2	Apply Thevenin's and Norton's theorems to simplify complex circuits.			
	To anal	yze some of the important physical quantities related to electricity and magnetism for a			
CO5	better un	nderstanding of the topic.			
	LO5.1	Calculate electric fields, potentials, and forces in different charge configurations.			
	LO5.2	Evaluate magnetic dipole moments and their interactions with magnetic fields.			

	Part I: Wave Optics			
Unit No.		Class Hours	Allotted Marks	
Unit I Wave Optics	Wave optics: Electromagnetic nature of light, definition and properties of wave front. Huygen's principle. Temporal and Spatial coherence.Young's double slit experiment. Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: Measurement of wavelength and refractive index. Michelson interferometer.	6	10	
Unit II Diffraction	Fresnel and Fraunhofer diffraction. Fresnel's Half-Period Zones for Plane Wave. Fresnel diffraction pattern at a straight edge and a circular aperture. Fraunhofer diffraction: Single slit, Double slit. Diffraction grating. Resolving power of grating.	7	12	
Unit III Polarization	Polarized light and its mathematical representation. Production of polarized light by reflection, refraction and scattering. Polarization by double refraction and Huygen's theory. Nicol prism, Production and analysis of circularly and elliptically polarized light.	5	8	
	Part II: Electricity and Magnetism			
Unit IV Electric field and electric potential	Electrostatic field, electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness theorem. Electrostatic boundary conditions. Laplace's and Poisson's equations. Application of Laplace's equation involving planar, spherical and cylindrical symmetries. Potential and electric field of a dipole. Force and torque on a dipole. Capacitance of an isolated conductor. Capacitance of a Parallel plate capacitor.	10	17	
Unit V Dielectric properties of matter	Dielectric, Dielectric Polarisation, Polarisation charges. Electrical susceptibility and dielectric constant. Capacitor (parallel plate, spherical and cylindrical) filled with dielectric. Displacement vector $\vec{-D}$. Relation between $\vec{-E}$, \vec{P} and $\vec{-D}$. Gauss's law in dielectrics.	4	7	
Unit VI Magnetic field	Magnetic force on a charged particle, Definition and properties of magnetic field ⁻ B, Curl and divergence of a magnetic field. Magnetic scalar potential and magnetic vector potential. Magnetic force (i) on a current carrying wire and (ii) between two elements. Lorentz force. Torque on a current loop in a uniform magnetic field. Biot-Savart's law and its simple application in straight wire and circular loop. Current loop as a magnetic dipole and its dipole moment (analogy with electric dipole). Ampere's circuital law and its application to (i) solenoid and (ii) torus. Electromagnetic Induction, Faraday's law. Working principle of Ballistic Galvanometer.	5	8	
Unit VII Magnetic properties of matter	Magnetisation vector ⁻ M, Magnetic intensity ⁻ H, Magnetic susceptibility and permeability. Relation between B ⁻ , ⁻ H and ⁻ M. Ferromagnetism. B-H curve and hysteresis.	3	5	
Unit VIII Electrical circuits	AC circuits: Kirchhoff's laws for AC circuits. I-V relations. Complex reactance and inductance. Series LCR circuit and parallel LCR circuit: (i) phasor diagram, (ii) resonance and sharpness of resonance, (iii) power dissipation, (iv) quality factor and (v) band width. Ideal	5	8	

Laboratory (Practical) At least five experiments from the following: 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current,(d) Capacitances, and (e) Checking electrical fuses. 2. To determine an unknown Low Resistance using a Potentiometer. 3. To determine an unknown Low Resistance using Carey Foster's Bridge. 4. To verify Thevenin's and Norton's Theorems. 5. To verify the superposition and maximum power transfer theorems. 6. To determine the self-inductance of a coil by Anderson's bridge. 7. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 30 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 30 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 14. To determine wavelength of sodium light using Newton's ring method.	constant-voltage and constant-current sources. Thevenin's theorem and Norton's theorem (only statements and solving of related problems), Maximum power transfer theorem and related numerical problems.		
 Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current,(d) Capacitances, and (e) Checking electrical fuses. To determine an unknown Low Resistance using a Potentiometer. To determine an unknown Low Resistance using Carey Foster's Bridge. To verify Thevenin's and Norton's Theorems. To verify the superposition and maximum power transfer theorems. To determine the self-inductance of a coil by Anderson's bridge. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. Determine a high resistance by leakage method using Ballistic Galvanometer. To determine the self-inductance of a coil by Rayleigh's method. Familiarization with: Schuster's focusing, determination of angle of prism. To determine refractive index of the material of a prism using sodium source. 	Laboratory (Practical)		
 (c) DC Current,(d) Capacitances, and (e) Checking electrical fuses. 2. To determine an unknown Low Resistance using a Potentiometer. 3. To determine an unknown Low Resistance using Carey Foster's Bridge. 4. To verify Thevenin's and Norton's Theorems. 5. To verify the superposition and maximum power transfer theorems. 6. To determine the self-inductance of a coil by Anderson's bridge. 7. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 	· ·		
 To determine an unknown Low Resistance using a Potentiometer. To determine an unknown Low Resistance using Carey Foster's Bridge. To verify Thevenin's and Norton's Theorems. To verify the superposition and maximum power transfer theorems. To determine the self-inductance of a coil by Anderson's bridge. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. Determine a high resistance by leakage method using Ballistic Galvanometer. To determine the self-inductance of a coil by Rayleigh's method. Familiarization with: Schuster's focusing, determination of angle of prism. To determine refractive index of the material of a prism using sodium source. 			
 To determine an unknown Low Resistance using Carey Foster's Bridge. To verify Thevenin's and Norton's Theorems. To verify the superposition and maximum power transfer theorems. To determine the self-inductance of a coil by Anderson's bridge. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. Determine a high resistance by leakage method using Ballistic Galvanometer. To determine the self-inductance of a coil by Rayleigh's method. Familiarization with: Schuster's focusing, determination of angle of prism. To determine refractive index of the material of a prism using sodium source. 			
 4. To verify Thevenin's and Norton's Theorems. 5. To verify the superposition and maximum power transfer theorems. 6. To determine the self-inductance of a coil by Anderson's bridge. 7. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 	-		
 5. To verify the superposition and maximum power transfer theorems. 6. To determine the self-inductance of a coil by Anderson's bridge. 7. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 6. To determine the self-inductance of a coil by Anderson's bridge. 7. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 7. To study the response curve of a series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 	•		
 (d) Band width. 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 8. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 Anti- resonant frequency and (b) Quality factor Q. 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 9. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 		30	25
 Galvanometer. 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 10. Determine a high resistance by leakage method using Ballistic Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 Galvanometer. 11. To determine the self-inductance of a coil by Rayleigh's method. 12. Familiarization with: Schuster's focusing, determination of angle of prism. 13. To determine refractive index of the material of a prism using sodium source. 			
 To determine the self-inductance of a coil by Rayleigh's method. Familiarization with: Schuster's focusing, determination of angle of prism. To determine refractive index of the material of a prism using sodium source. 			
12. Familiarization with: Schuster's focusing, determination of angle of prism.13. To determine refractive index of the material of a prism using sodium source.			
13. To determine refractive index of the material of a prism using sodium source.			
source.			
14. To determine wavelength of sodium light using Newton's ring method.			
	14. 10 determine wavelength of sodium light using Newton's ring method.		

- 1. Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- 2. A Textbook of Sound, 3rd Edition, A. B. Wood, 1955, Bell & Sons.
- 3. The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- 4. Fundamentals of Optics, F. A. Jenkins and H.E. White, 1981, McGrawHill.
- 5. Optics, Ajoy Ghatak, 2008, Tata McGraw Hill.
- 6. Principles of Optics, B. K. Mathur and T. P. Pandya, 1981, Tata McGrawHill International.
- 7. Fundamental of Optics, A. Kumar, H. R. Gulati and D. R. Khanna, 2011, S Chand Publications.
- 8. Electricity and Magnetism [With electromagnetic theory and special theory of relativity], D.
- Chattopadhyay and P. C. Rakshit, New Central Book Agency (P) Limited.
- 9. Introduction to Electrodynamics, D.J.Griffiths, Pearson.
- 10. Electromagnetics, B.B. Laud, New Age International Publishers.
- 11. Electricity and Magnetism, J.W.Fewkes and J.Yarwood, Vol.I, OxfordUniv.Press.

12. Feynman Lectures Vol. 2, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.

Name of the Department: Physics Semester: II Name of the Paper: Basic Instrumentation Skills Paper Type: SEC Paper Code: Credit: 3 (Theory: 2+ Practical:1); Hours: 30 Hours (Theory) + 30 Hours (Practical) Lecture: 2 Credits; Practical: 1 Credit; Tutorial: 0 Full Marks: 75

Course Objectives:

This course introduces fundamental concepts of electronic instrumentation, including the working principles of digital multimeters, oscilloscopes, and signal generators. It emphasizes accuracy, safety, and effective use of laboratory tools for precise measurements. Students gain practical skills in assembling and testing electronic components and circuits.

Course Outcome:

After su	After successful completion of the course, the students will-				
	Able to	understand different working of principle of digital multimeter and different soldering			
	techniqu				
	L01.1	Demonstrate soldering techniques for Electronic components such as resistor, diode,			
CO 1		transistor, capacitor etc.			
		and repair tasks			
	LO1.2	Explain the block diagram of digital multimeters and their use for precision			
		measurements.			
	Able to	apply multimeter to measure different electrical quantities and test different electronic			
	compor				
CO 2	LO2.1	Measure resistance, voltage, and current using a multimeter.			
	LO2.2	Test the functionality of electronic components such as diodes and transistors.			
	Able to	understand the working of CRO			
CO 3	LO3.1	Describe the block diagram and key functionalities of a CRO.			
	LO3.2	Demonstrate the measurement of voltage, frequency, and phase using CRO.			
	Able to	apply to CRO to measure rise, fall and delay times of electrical signals.			
CO 4	LO4.1	Use CRO to accurately measure time-domain characteristics of signals.			
	LO4.2	Analyze the shape and delay properties of various waveforms.			
	Able to	understand the working of Electronic Voltmeter.			
CO 5	LO5.1	Explain the advantages of electronic voltmeters.			
	LO5.2	Measure small voltage differences with high sensitivity using electronic voltmeters.			
	Able to	understand the basics of Signal Generators.			
CO 6	LO6.1	Operate low-frequency signal generators for circuit testing and analysis.			
	LO6.2	Evaluate waveform properties using function generators.			

Unit No.	Syllabus	Class Hours	Allotted Marks
Unit I: Electrical and Electronic Skill	Use of Multimeter. Soldering of electrical circuits having discrete components (R, L, C, diode) and ICs on PCB. Operation of oscilloscope. Operation principle of regulated power supply. Timer circuit, Electronic switch using transistor and relay.	5	8
Unit II: Digital Multimeter	Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.	6	10
Unit III: Cathode Ray Oscilloscope	Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition.Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance.	6	10
Unit IV: Electronic Voltmeter	Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity.Principles of voltage measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram of ac millivoltmeter, specifications and their significance.	9	15
Unit V: Signal Generators and Analysis Instruments	Block diagram, explanation and specifications of low frequency signal generator, pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.	4	7

Laboratories	30	25
Perform At least five experiments from the following:		
1. To observe the loading effect of a multimeter while measuring		
voltage across a low resistance and high resistance.		
2. Study the use of multimeter and Oscilloscope.		
3. To use soldering of electrical circuit having discrete components on		
PCB.		
4.		
5. To construct a regulated power supply,		
6. To observe the limitations of a multimeter for measuring high		
frequency voltage and currents.		
7. To measure Q of a coil and its dependence on frequency using a Q-		
meter.		
8. Measurement of voltage, frequency, time period and phase angle		
using CRO.		
9. Measurement of time period, frequency, average period using		
universal counter/ frequency counter.		
10. Measurement of rise, fall and delay times using a CRO.		
11. Measurement of distortion of a RF signal generator using distortion		
factor meter.		
12. Measurement of R, L and C using a LCR bridge/ universal bridge.		

- 1. Electronic Measurements and Instrumentation, K. Lal Kishore, Pearson India
- 2. Electrical and Electronics Measurements and Instrumentation, Prithwiraj Purkait, Budhaditya Biswas, Santanu Das, Chiranjib Koley, McGraw Hill India.
- 3. A text book in Electrical Technology B L Theraja S Chand and Co.
- 4. Performance and design of AC machines M G Say ELBS Edn.
- 5. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 6. Logic circuit design, Shimon P. Vingron, 2012, Springer.
- 7. Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- 8. Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- 9. Electronic circuits: Handbook of design and applications, U.Tietze, Ch.Schenk, 2008, Springer
- 10. Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

Name of the Department: Physics Semester: II Name of the Paper: Evolution and Prospects of Physical Science Paper Type: MDC Paper Code: Credit: 3 (Theory: 3); Hours: 45 Hours (Theory) Lecture: 3 Credits; Practical:0; Tutorial:0 Full Marks: 75

Course Objectives:

This course provides a comprehensive overview of the evolution of physics, basic laws of physical science, and their applications in electricity, magnetism, quantum mechanics, and thermodynamics. Special focus is given to the contributions of Indian physicists and their impact on global scientific advancements.

Course Outcome:

After s	After successful completion of the course, the student will be able					
	To understand about the evolution of Physics, basic laws of physics, gravity and astronomy					
CO1	LO1.1	Identify the key laws of physics and their importance in understanding natural				
		phenomena like gravity.				
	LO1.2	Describe the Big Bang, black holes, and gravitational waves in simple terms, focusing on				
		their role in the universe's evolution.				
	To understand the basic laws of electricity and magnetism, heat and thermodynamics.					
CO2	LO2.1	Explain how thermodynamics applies to everyday tools like refrigerators and engines.				
	LO2.2	Describe simple concepts of electricity and magnetism, such as how magnets attract or				
		repel and how electric circuits work.				
CO3	To understand the basic laws of quantum theory					
	LO3.1	Introduce quantum ideas, such as the dual nature of light (wave and particle), in a simple				
		way.				
	LO3.2	Explain how quantum mechanics helps us understand the behavior of very small				
		particles like electrons.				
CO4	Ccontribu	tions of Indian science and its historical context.				
	LO4.1	Discuss the achievements of ancient Indian scientists in physical sciences.				
	LO4.2	Summarize modern Indian physicists' contributions and their global impact.				
CO5	Understar	nd the fundamental discoveries in physical sciences and their implications				
	LO5.1	Evaluate the societal and technological significance of discoveries like the electron and				
	L05.1	neutron.				
	LO5.2	Discuss the implications of quantum mechanics and nuclear physics on modern				
		technology.				

Unit No.	Syllabus	Class Hours	Allotted Marks
Unit I Classical Physics	A brief history of the evolution of Physical Science, Fundamental forces of nature, Newton's law of Gravitation and its implications, the formation of stars, Black holes, Warm holes, the Big Bang, the Laser Interferometer Gravitational-Wave Observatory (LIGO), LIGO in India.	7	12
Unit II Evolution of	Historical Development of Electromagnetism: Concept of charge and Coulomb's law, evolution of electric and magnetic field	9	15

Electromagnetism and Thermodynamics	theories, key discoveries (Faraday's Law, Maxwell's equations).Foundations of Thermodynamics: Origins and significance of heat and energy, historical perspectives on the laws of thermodynamics, role of thermodynamics in scientific advancements.Evolution of black body radiation theory, Planck's contribution, impact on modern physics.		
Unit III Quantum Theory and application	Failure of classical physics, evolution of quantum theory and applications, wave-particle duality, Brief introduction of Schrodinger equation and its applications	15	25
Unit IV Fundamental Discoveries and their implications	Rutherford's Experiment and the discovery of the Atomic Nucleus, Thomson's Experiment and the discovery of the Electron, Millikan's Oil Drop Experiment, Chadwick's Experiment and the discovery of the Neutron Implications of Fundamental Discoveries: Advancement of atomic models, the development of quantum mechanics, Applications in nuclear energy, semiconductors, and particle physics. Broader societal and ethical considerations of discoveries in physical sciences.	9	15
Unit V Indian Contributions to Science and Technology	Ancient Indian Scientists and their contributions: Kanada, Aryabhata, Brahmagupta, Bhaskara II (Bhaskaracharya), Varāhamihira, Modern Indian Physicists and their Contributions: C.V. Raman, S.N. Bose, Homi J. Bhabha, Meghnad Saha, Vikram Sarabhai, Satish Dhawan, APJ Abdul Kalam, Modern Institutions and Milestones: Role of Indian Science Academies: INSA, IAS, NAS, Chandrayaan Missions, Mangalyaan, NISAR Mission, National Quantum Mission.	5	8

- 1. Concepts of ModernPhysics, Beiser, A. (2003), Tata McGraw-Hill Education.
- 2. Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education.
- 3. Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
- 4. Science in India: A Historical Perspective, B. V. Subbarayappa, Rupa Publications.