1(Sem-8/FYUGP)BNC(A)/DSCI

2024

MATHEMATICS

(Discipline Specific Core)

Paper Name: Classical Algebra

Paper Code: MAT-DSC-141

Full Marks: 60

Time: Two and Half Hours

(The figures in the margin indicate full marks for the questions)
Answer either in English or in Assamese

1. Answer the following questions:

1x7 = 7

তলৰ প্ৰশ্নবোৰৰ উত্তৰ দিয়া-

- (a) What is the polar representation of -1?-1 ৰ ধ্ৰুৱীয প্ৰকাশ কি ?
- (b) $(\cos\theta + i\sin\theta)^{-5} = ?$
- (c) Write the three cube roots of unity.

1 ৰ ঘনমূল তিনিটা লিখা I

- (d) What is monic polynomial? মনিক বহুপদ ৰাশি কি ?
- (e) Write True/False.

"An equation with rational co-efficient, irrational roots occur in conjugate pair".

সছা/মিছা লিখা –

''পৰিমেয় সহগযুক্ত এটা সমীকৰণৰ অপৰিমেয় মূলবোৰ সংযুক্ত আকাৰত থাকে'' l

(f) If A is a square matrix, then show that $A+A^{T}$ is symmetric.

যদি A এটা বৰ্গাকাৰ মৌলকক্ষ, তেন্তে দেখুওৱা যে $A + A^T$ মৌলকক্ষটো সমমিত I

- (g) If $A = \begin{bmatrix} 0 & 2 & 5 \end{bmatrix}$, then find the rank of 3A. যদি $A = [0 \ 2 \ 5]$ হয় তেন্তে 3A ৰ ৰেংক কিমান হব ?
- **Answer the following questions:** 2.

2x4 = 8

তলৰ পশুবোৰৰ উত্তৰ দিয়া-

নিৰ্ণয কৰা I

- (a) Find LogZ and logZ if Z = i. LogZ আৰ logZ নিৰ্ণয় কৰা যদি Z = i.
- (b) Find the fourth root of 1. 1 ৰ 4-তম মূলবোৰ উলিওৱা I
- (c) Determine the possible number of positive and negative real roots of the equation.

$$2x^5 - 6x^4 + x^3 - 6x^2 + 2x - 1 = 0$$
 তলত দিয়া সমীকৰনটোৰ ধনাত্মক আৰু ঋণাত্মক মূলৰ সাম্ভাব্য সংখ্যা

$$2x^5-6x^4+x^3-6x^2+2x-1=0$$

(d) Determine the unknown quantities in expression

$$2\begin{bmatrix} x+2 & y+3 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ y & z \end{bmatrix}^{T}$$

তলৰ প্ৰকাশ ৰাশিত থকা নজনা ৰাশিবোৰ নিৰ্ণয় কৰা :

$$2\begin{bmatrix} x+2 & y+3 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ y & z \end{bmatrix}^{T}$$

- Answer the following questions (any three) 3. 5x3=15তলৰ প্ৰশ্নবোৰৰ উত্তৰ দিয়া (যিকোনো তিনিটা)
 - (a) If $x = \cos\alpha + i\sin\alpha$, $y = \cos\beta + i\sin\beta$ and $z = \cos\gamma + i\sin\gamma$, then prove that

$$\cos(\beta-\gamma)+\cos(\gamma-\alpha)+\cos(\alpha-\beta)=1$$
 যদি $x=\cos\alpha+i\sin\alpha,\ y=\cos\beta+i\sin\beta$ আৰু $z=\cos\gamma+i\sin\gamma,$ প্রমাণ কৰা যে $\cos(\beta-\gamma)+\cos(\gamma-\alpha)+\cos(\alpha-\beta)=1$

(b) Solve the equation $16x^4-64x^3+56x^2+16x-15=0$, whose roots are in A.P.

 $16x^4$ - $64x^3$ + $56x^2$ +16x-15=0 সমীকৰণটো সমাধান কৰা যদি মূলবোৰ সমান্তৰ প্ৰগতিত থাকে |

(c) Prove that an algebraic equation of degree n has at most n roots.

প্ৰমাণ কৰা যে n ঘাতৰ বীজগণিতীয় সমীকৰণ এটাৰ সৰ্বেবাচ্ছ n সংখ্যক মূল থাকে I

(d) Show that: দেখুওৱা যে:

$$ilog\left(\frac{x-i}{x+i}\right) = \pi - 2tan^{-1}x$$

(e) Find A⁻¹ if (A⁻¹ উলিওৱা যদি)

$$A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$$

(f) If A and B are non-singular matrices then prove that

(i)
$$(A^{-1})^{-1} = A$$

(ii)
$$(AB)^{-1} = B^{-1}A^{-1}$$

যদি A আৰু B দুটা নন-চিংগুলাৰ মৌলকক্ষ হয়, প্ৰমাণ কৰা যে

(i)
$$(A^{-1})^{-1} = A$$

(ii)
$$(AB)^{-1} = B^{-1}A^{-1}$$

- 4. Answer the following questions (any two) 10x3=30 তলৰ প্ৰশ্নবোৰৰ উত্তৰ দিয়া (যিকোনো দুটা)
 - (a) (i) State and prove De-Moivere's theorem for positive and negative integer index.
 ধনাত্মক আৰু ঋণাত্মক অখন্দ সূচকৰ বাবে ডি মইভাৰৰ উপপাদ্যটো উক্তিটো
 লিখি প্ৰমাণ কৰা |

(ii) If
$$\sin(\theta+i\phi)=\tan\beta+\mathrm{isec}\beta$$
, then prove that
$$\cos 2\theta \cosh 2\phi=3$$
 যদি $\sin(\theta+i\phi)=\tan\beta+\mathrm{isec}\beta$, তেন্তে প্ৰমাণ কৰা যে
$$\cos 2\theta \cosh 2\phi=3$$

(b) (i) If n is an intger, prove that
$$\left(\frac{1+sin\theta+icos\theta}{1+sin\theta-icos\theta} \right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right)$$
 যদি n এটা অখন্দ সংখ্যা, তেন্তে প্ৰমাণ কৰা যে

$$\left(\frac{1+sin\theta+icos\theta}{1+sin\theta-icos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right)$$

- (ii) Find all complex numbers z such that exp z = -1 সকলো জটিল সংখ্যা z নিৰ্ণয় কৰা যাতে exp z = -1
- (c) (i) Let A be an *n* x *n* matrix. Then show that the following statements are equivalent.
 - a. A⁻¹ exists
 - b. Rank A = n
 - c. Ax = 0 implies that x = 0

ধৰা A এটা $n \times n$ মৌলকক্ষ I প্ৰমাণ কৰা যে তলত দিয়া বাক্য তিনিটা সমতুল্য:

- a. A⁻¹ স্হিত হয়
- b. Rank A = n
- c. Ax = 0 হলে x = 0 হব |

- (d) (i) Find the polynomial of lowest degree which vanishes at x = -1, 0, 1 and takes the value 12 at x=2
 x = -1, 0, 1 মানত সমাপন হোৱা নিম্নতম ঘাতৰ বহুপদ ৰাশিটো নির্ণয় কৰা যত
 বহুপদ ৰাশিটোৱে x=2 ৰ বাবে 12 মান লয় |
 - (ii) Find k so that (1-i) is a root of $kx^2+2x+1=0$ k ৰ মান নিৰ্ণয় কৰা যাতে (1-i) য়ে $kx^2+2x+1=0$ সমীকৰণটোৰ এটা মূল হয়।
 - (iii) Solve the equations: সমাধান কৰা :

$$2x-y+3z = 0$$

 $3x+2y+z = 0$
 $x-4y+5z = 0$

(e) When does a homogeneous system of linear equations possess a unique solution and what is that unique solution, explain. Further, show that the following homogeneous system has infinitely many solution and obtain its general solution.

$$x+2y+z = 0$$
$$2x+4y+z = 0$$
$$x+2y-z = 0$$

ৰৈখিক সমীকৰণৰ এটা সমজাতীয় প্ৰণালী কেতিয়া একক সমাধানৰ অধিকাৰী হয় আৰু সেই একক সমাধানটো কি ? ব্যাখ্যা কৰা | ইয়াৰ ওপৰি দেখুওৱা যে তলত দিয়া সমজাতীয় প্ৰণালীটোৰ অসীম সংখ্যক সমাধান আছে, আৰু ইয়াৰ সাধাৰন সমাধান উলিওৱা:

$$x+2y+z = 0$$
$$2x+4y+z = 0$$
$$x+2y-z = 0$$

(f) Explain the Cardon's method of solution of cubic equation $ax^3+bx^2+cx+d=0$ How can we study the nature of roots using this method? $ax^3+bx^2+cx+d=0$ ত্ৰিঘাতৰ সমীকৰণটো সমাধানৰ কাৰ্ডনৰ পদ্ধতিটো ব্যাখ্যা কৰা। এই পদ্ধতিৰ সহায়ত কেনেকৈ মূলবোৰৰ প্ৰকৃতি অধ্যয়ন কৰিব পাৰি?
