Total number of printed pages-8

3 (Sem-4/CBCS) MAT HC3

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4036

(Ring Theory)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 10=10$
 - (a) Give an example to show that for two non-zero elements a and b of a ring R, the equation ax = b can have more than one solution.
 - (b) How many nilpotent elements have in an integral domain?

- (c) Which of the following statements is not true?
 - (i) $\langle 5 \rangle$ is a prime ideal of Z.
 - (ii) $\langle 5 \rangle$ is a maximal ideal of Z.
 - (iii) $\langle 5 \rangle$ is a maximal ideal of Z_{20} .
 - (iv) $\frac{Z}{5Z}$ is an integral domain.
- (d) Define prime ideal of a ring.
- (e) Give example of a commutative ring without zero divisor that is not an integral domain.
- (f) Consider the polynomial $f(x) = 4x^3 + 2x^2 + x + 4 \text{ and}$ $g(x) = 3x^4 + 3x^3 + 3x^2 + x + 4 \text{ in } Z_5.$ Compute f(x) + g(x).
- (g) Write $f(x) = x^3 + x^2 + x + 1 \in \mathbb{Z}_2[x]$ as a product of irreducible polynomial over \mathbb{Z}_2 .

- (h) Which of the following is a primitive polynomial?
 - (i) $2x^3 + 4x^2 + 6x + 10$
 - (ii) $5x^2 30x 20$
 - (iii) $2x^4 + 3x^3 + 5x^2 7x + 11$
 - (iv) $3x^2 3x + 3$
- (i) State whether the following statement is true or false:

"A polynomial f(x) in Z[x] which is reducible over Z is also reducible over Q."

- (j) Choose the correct statement:
 - (i) Every Euclidean domain is a unique factorization domain.
 - (ii) Every principal ideal domain is a Euclidean domain.
 - (iii) Every unique factorization domain is a Euclidean domain.
 - (iv) Every unique factorization domain is a principal ideal domain.

- 2. Answer the following questions: $2\times5=10$
 - (a) If a and b are two idempotents in a commutative ring, then show that a+b-ab is also an idempotent element.
 - (b) Show that every non-zero element of Z_n is a unit or a zero divisor.
 - (c) Show that every ring homomorphism $f: Z_n \to Z_n$ is of the form f(x) = ax where $a = a^2$.
 - (d) Find the zeros of $f(x) = x^2 + 3x + 2$ in Z_6 .
 - (e) Let D be an integral domain and $a,b \in D$. If $\langle a \rangle = \langle b \rangle$, then show that a and b are associates.
- 3. Answer **any four** questions: $5 \times 4 = 20$
 - (a) The operations \oplus and \otimes defined on the set Z of integers by $a \oplus b = a + b 1$ and $a \otimes b = a + b ab$. Show that (Z, \oplus, \otimes) is a ring with unity.
 - (b) Find all ring homomorphism from $Z \oplus Z$ to Z.

- (c) Let R be a commutative ring with unity. Show that an ideal A of R is prime if and only if the quotient ring $\frac{R}{A}$ is an integral domain.
- (d) Define principal ideal domain. Show that if F is a field, then F[x] is a principal ideal domain. 1+4=5
- (e) Show that every Euclidean domain is a principal ideal domain.
- Show that the number of reducible polynomials over Z_p of the form $x^2 + ax + b$ is $\frac{p(p+1)}{2}$.
- 4. Answer the following questions: $10\times4=40$
 - (a) (i) Let R be a commutative ring with unity. Show that the set

$$R[x] = \{a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 / a_i \in R,$$

n is a non-negative integer} is a ring. Also show that if R is an integral domain, then R[x] is also an integral domain. 5+2=7

(ii) Let
$$f(x) = 5x^4 + 3x^3 + 1$$
 and $g(x) = 3x^2 + 2x + 1$ in $Z_7[x]$.

Determine the quotient and remainder upon dividing $f(x)$ by $g(x)$.

Or

(i) Show that

$$Z\left|\sqrt{2}\right| = \left\{a + b\sqrt{2} : a, b \in Z\right\}$$
 and $H = \left\{\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} / a, b \in Z\right\}$

are isomorphic as ring.

- (ii) If a, b be any two ring elements and m and n be any two integers, then show that (m.a)(n.b) = (mn).(ab) 6
- (b) (i) Define maximal ideal of a ring. Let A be an ideal of a commutative ring with unity R. Prove that $\frac{R}{A}$ is a field if and only if A is maximal. 1+6=7

(ii) Let R be a commutative ring and A be any subset of R. Show that the nil-radical of A,

$$N(A) = \{ r \in R / r^n \in A \text{ for some } n \in N \}$$
 is an ideal of R .

Or

- (i) Let φ be a ring homomorphism from R to S. Then the mapping $\frac{R}{\ker(\varphi)} \text{ to } \varphi(R), \text{ given by } r + \ker(\varphi) \to \varphi(r) \text{ is an }$ isomorphism, i.e., $\frac{R}{\ker(\varphi)} \approx \varphi(R)$.
- (ii) Let ϕ be a ring homomorphism from a ring R to a ring S. Let B be an ideal of S. Then $\phi^{-1}[B] = \{r \in R : \phi(r) \in B\}$ is an ideal of R.
- (c) If F is a field and $p(x) \in F[x]$, then prove that $\frac{F[x]}{\langle p(x) \rangle}$ is a field if and only if p(x) is irreducible over F.

Let F be a field. If $f(x) \in F[x]$ and degree f(x) is 2 or 3, then f(x) is reducible over F if and only if f(x) has a zero in F. Is the result true when degree f(x) is greater then 3? Justify.

7+3=10

(d) In a principal ideal domain, show that an element is irreducible if and only if it is prime. Use this result to show that $Z[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in Z\}$ is not a principal ideal domain. 7+3=10

Or

- (i) In a principal ideal domain, show that any strictly increasing chain of ideals $I_1 \subset I_2 \subset ...$ must be finite in length.
- (ii) Let ϕ be a onto ring homomorphism from a ring R to a ring S. Then prove that ϕ is an isomorphism if and only if $\ker(\phi) = \{0\}$.
- (iii) Determine all ring homomorphism from the ring of integers Z to itself.

2