Tota	alii	numl	ber	of r	printed	pages-7	All constr	(9)
	H	169	nil	be	inust	function	objective	
	(9)	Fals	10	, an	Site Tr	3 (Sem-5/	CBCS) STA	HE 1

2024

STATISTICS

(Honours Elective)

Paper: STA-HE-5016 (ii)

(Operations Research)

Full Marks: 60

Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions as directed: $1 \times 7 = 7$

equal to the sum of gains to other

- (a) Operations Research achieved recognition as a subject for study in the universities in the year
- Choose th E 291 reculi)

umber of basic

- A mixed strategy game of 1957e s (ii) ed b
 - algebraic method 9791
 - (iv) 1950 builton xittism (ii)

(Choose the correct option)

O' I HE ATC Contd.

- All constraints in an LPP as well as its objective function must be linear in nature. (State 'True' or 'False')
- In a LPP with m constraints in n variables, the maximum number of basic (c) solutions are TRITATE
 - Changing Electrically (i)
 - (ii)
 - ${}^{\dagger}C_{C_{m-1}}^{perations}$ Research ${}^{\dagger}C_{m-1}^{perations}$ (iii)
 - (iv) None of the above (Choose the correct option)
- (d) A two-person zero-sum game means that
 - the sum of losses to one player is equal to the sum of gains to other
 - the sum of losses to one player is not equal to the sum of gains to other.
 - (iii) Both (i) and (ii)
 - (iv) None of the above (Choose the correct option)
- (e) A mixed strategy game can be solved by
 - algebraic method 2501 W
 - matrix method

- graphical method anti-
 - (iv) All of the above

(Choose the correct option)

- The solution to a transportation problem with m rows (supplies) and n columns (destinations) is feasible if number of disways positive allocations are ming of
 - m+n
 - (ii)
 - any three from (iii) m+n-1
 - (iv) m+n+1

(Choose the correct option)

- In ABC analysis 'A' items requires (g)
 - no safety stock
 - low safety stock (ii)
 - (iii) moderate safety stock
- and (iv) high safety stock

Choose the correct option)

Answer the following questions: Express the following LPP in standard ges while machine 's imrolused's for

Maxinize $Z = 5x_1 + 3x_2 + 2x_3$ the grablem wot tosidus programming

$$3x_1 - 2x_2 + 4x_3 \le 5$$

bortom nortemixe
$$2x_1 + 5x_2 + 3x_3 \ge 12$$

 $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign.

3 (Sem-5/CBCS) STA HE 1/G 3

All All (2090) Contd.

- Define inventory. What is the objective of an inventory problem?
- (c) State the condition for the existence of feasible solution to an $m \times n$ transportation problem.
- (d) Define payoff matrix in context with game theory.
- 3. Answer any three from the following questions: 5×3=15

A firm manufactures two types of products A and B and sells them at a profit of Rs. 2 on type A and Rs.3 on type B. Each product is processed on two machines M₁ and M₂. Type A requires one minute of processing time on M₁ and two minutes on M₂. Type B requires one minute on M₁ and one minute on M₂. The machine M₁ is available for not more than 6 hours 40 minutes while machine M₂ available for 10 hours during working day. Formulate the problem as a linear programming problem.

Explain Vogel's approximation method to solve transportation problem for an initial basic feasible solution.

(c) Define the following:

2+1+1+1=5

- (i) Competitive game
- (ii) Pure strategy
- (iii) Mixed strategy
- (iv) n-person game
- (d) Define saddle point and value of game with examples.

(e) Write a note on ABC analysis.

4. Answer **any three** questions from the following: 10×3=30

Define slack and surplus variables.

Solve the following LPP by simplex method:

3+7=10

Maximize $Z=2x_1+3x_2$ subject to $x_1+x_2 \le 1$

 $3x_1 + x_2 \le 4$

 $x_1, x_2 \ge 0$

(b) (i) Explain the principle of dominance in game theory. 5

- (ii) A and B play game in which each has three coins Re.1, Rs.2 and Rs.5. Each selects a coin without the knowledge of the other's choice. If the sum of the coin is an odd amount, A wins B's coin and if the sum is even, B wins A's coin. Find the best strategy for each player and the value of the game.
- What are the characteristics of the (c) standard form of an LPP?

Solve the following LPP graphically: Answer any three owest

Maximize
$$Z = 5x_1 + 3x_2$$

subject to $3x_1 + 5x_2 \le 15$
xelqmize of SIJ priviol $5x_1 + 2x_2 \le 10$
 $x_1, x_2 \ge 0$

(d) What is economic order quantity (EOO)? Obtain the economic order quantity of an inventory problem where lead time is zero, demand is uniform, production is instantaneous and 1+9=10shortages are not alllowed.

Formulate mathematically a (e) transportation problem as a linear programming problem having m origins and *n* destinations.

> Determine an initial basic feasible the following solution to transportation problem using Vogel's method.

Destination		-		
Origin	D_1	D_2	D_3	Supply
O ₁	13	15	16	17
O ₂	7	11	2	12
О3	19	20	9	16
Demand	14	8	23	

- Mention the different types inventory.
 - Explain various costs associated with inventory control.