3 (Sem-4/CBCS) CHE HC1

2023

CHEMISTRY

(Honours Core)

Paper: CHE-HC-4016

(Inorganic Chemistry-III)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following:

 $1 \times 7 = 7$

- (i) The compound which exhibits Jahn-Teller distortion is
 - (a) $[Mn(H_2O)_6]^{2+}$
 - (b) $[Mn(H_2O)_6]^{3+}$
 - (c) $[Cr(H_2O)_6]^{3+}$
 - (d) $[Fe(CN)_6]^{4-}$

(Choose the correct answer)

Contd.

- Which metal helps in blood clotting?
- For which of the following ions, colour is not due to a d-d transition?

 - $Cu(NH_3)_4^{2+}$
 - $Ti(H_2O)_6^{3+}$
 - (d) CoF₆³⁻ (Choose the correct answer)
- (iv) What is the main iron storage protein in biological system?
- What type of isomerism is exhibited by the complex $\left[Co(NH_3)_5 NO_2\right]^{2+}$?
- Draw the structure of the following complex: Tri-μ-hydroxo bis [triammine chromium(III)]
- (vii) Which metal deficiency causes pernicious anemia?

- 2. Answer the following: $2\times4=8$
- - Explain why Ce^{+3} and Tb^{+3} colourless but show strong absorption in UV region.
 - (ii) How does mercury cause toxicity in living system ?
 - Why do transition metals show variable oxidation states?
 - Determine the crystal field splitting energy Δ_0 of a d^6 complex having $10 Dq = 25,000 cm^{-1}$ and $P = 15,000 \text{ cm}^{-1}$. Consider low spin complex.
- Answer any three questions from the 5×3=15 following:
 - Using crystal field theory explain the difference in magnetic property of $[CoF_6]^{3-}$ and $[Co(CN)_6]^{3-}$.

- (ii) Comment on the spectral and magnetic properties of actinide elements compared to lanthanides.
- (iii) What is Na/K pump? Write the mechanism of action of Na/K pump.
- (iv) Given below is the Latimer diagram of manganese in acidic medium: 2+3=5

$$MnO_4^- \xrightarrow{+0.56} MnO_4^{2-} \xrightarrow{+2.26} MnO_2 \xrightarrow{+0.95} Mn^{3+} \xrightarrow{+1.15} Mn^{2+} \xrightarrow{-1.19} Mn^{3+}$$

- (a) Which species are likely to disproportionate and why?
- (b) Calculate standard reduction potential for the couple MnO_4^{2-}/Mn^{3+}
 - (v) Discuss the mechanism of binding of dioxygen with hemoglobin.
- 4. Answer any three questions from the following: 10×3=30
 - (i) Explain the bonding of $[Co(NH_3)_6]^{3+}$ with the help of molecular orbital theory. Draw the energy level diagram and also predict the magnetic property of the complex. 6+3+1=10

- (ii) (a) Explain the evidences in favour of the covalency of metal-ligand bonding in complexes.
 - (b) What inferences can be drawn from the following reactions? 5

$$[Ni(CN)_4]^{2^-} + 4*CN^- \longrightarrow [Ni(*CN)_4]^{2^-} + 4CN^- \text{ (very fast) } t_{1/2} = 30 \text{ sec}$$

$$[Mn(CN)_6]^{3^-} + 6*CN^- \longrightarrow [Mn(*CN)_6]^{3^-} + 6CN^- \text{ (slow)} \qquad t_{1/2} = 1 \text{ hr}$$

$$[Cr(CN)_6]^{3^-} + 6*CN^- \longrightarrow [Cr(*CN)_6]^{3^-} + 6CN^- \text{ (slowest) } t_{1/2} = 24 \text{ days}$$

- (iii) Write about the use of chelating compounds in medicinal chemistry.
- (iv) Answer the following questions regarding oxidation states exhibited by the first transition series elements:
- (a) List the oxidation states shown by each element indicating the unstable states within bracket.

- (b) All the elements except scandium exhibits a+2 oxidation state whereas scandium exhibits a+3 oxidation state only. Explain.
 - (c) Why do the elements at each end of the series exhibit minimum number of oxidation states and those in the middle show a maximum number of oxidation states?
 - (d) Why are the higher oxidation states stabilised by oxide or fluoride? 3+2+3+2=10
 - (v) What is lanthanide contraction and what is its cause? Discuss the separation of lanthanides using ion exchange method. Explain why La^{3+} is colourless but Lu^{4+} is orange red. 1+2+5+2=10

(vi) What special feature of Zn^{2+} makes it an excellent candidate for different enzymes? Write the structure and function of carbonic anhydrase enzyme with suitable diagram. 2+2+6=10