3 (Sem-3/CBCS) MAT HC 2

2023

MATHEMATICS

(Honours Core)

Paper: MAT-HC-3026

(Group Theory-1)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: 1×10=10
 - (a) Define order of an element of a group.
 - (b) In the group Q^* of all non-zero rational numbers under multiplication, list the elements of $\begin{pmatrix} 1 \\ \end{pmatrix}$

elements of $(\frac{1}{2})$.

(c) Find elements A, B, C in D_4 such that AB = BC but $A \neq C$.

- (d) Define simple group.
- (e) State Cauchy's theorem on finite Abelian group.
- (f) State whether the following statement is true or false:
 "If H is a subgroup of the group G and a ∈ G, then Ha = {ha : a ∈ G} is also a subgroup of G."
- (g) Write the order of the alternating group A_n of degree n.
- (h) Give an example of an onto group homomorphism which is not an isomorphism.
- (i) State whether the following statement is true **or** false:

 "If the homomorphic image of a group is Abelian then the group itself is Abelian."
- (j) Which of the following statement is true?
 - (a) A homomorphism from a group to itself is called monomorphism.
 - (b) A one-to-one homomorphism is called epimorphism.

- endomorphism.
- (d) None of the above
- 2. Answer the following questions: 2×5=10
 - (a) In D_3 , find all elements X such that $X^3 = X$.
 - (b) Consider the group Z_2 under $+_2$ and Z_3 under $+_3$. List the elements of $Z_2 \oplus Z_3$ and find $|Z_2 \oplus Z_3|$.
 - (c) Express $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 1 & 4 & 3 & 2 \end{pmatrix}$ as product of transposition and find its order.
 - (d) If $\psi: G \to G'$ is a group homomorphism and e and e' be the identity elements of the group G and G' respectively then show that $\psi(e) = e'$.
 - (e) Show that in a group G, if the map $f: G \to G'$ defined by $f(x) = x^{-1}$, $\forall x \in G$ is a homomorphism then G is Abelian.

- (a) Let G be a group and H be a nonempty finite subset of G. Prove that H is a subgroup of G if and only if H is closed under the operation in G.
- (b) If a is an element of order n in a group and k is a positive integer then prove that

$$\left| a^k \right| = \left\langle a^{gcd(n, k)} \right\rangle$$
 and show $\left| a^k \right| = \frac{n}{gcd(n, k)}$.

- (c) Show that a subgroup H of a group G is a normal subgroup of G if and only if product of two right cosets of H in G is again a right coset of H in G.
- (d) If a, n are two integers such that $n \ge 1$ and $\gcd(a, n) = 1$, then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$, where $\phi(n)$ is the Euler's phi function.
- (e) Show that any finite cyclic group of order n is isomorphic to $\frac{\mathbb{Z}}{\langle n \rangle}$, where \mathbb{Z} is the additive group of integers and $\langle n \rangle = \{0, n, 2n, \dots\}$.

- (f) Let $\sigma: G \to \overline{G}$ be a group homomorphism and $a, b \in G$.
- Show that works works $\sigma(a) = \sigma(b) \Leftrightarrow a \ker \sigma = b \ker \sigma$.
 - (ii) If $\sigma(g) = g'$ then show that $\sigma(g') = \{x \in G : \sigma(x) = g'\} = g \ker \sigma.$ 2+3=5

Answer either (a) or (b) from the following questions:

- 4. (a) Describe the elements of D_4 , the symmetries of a square. Write down a complete Cayley's table for D_4 . Show that D_4 forms a group under composition of functions. Is D_4 an Abelian group?
 - (b) Prove that every subgroup of a cyclic group is cyclic. Also show that if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n.

 Moreover, show that the group $\langle a \rangle$ has exactly one subgroup $\langle a^{\frac{n}{k}} \rangle$ of order k. Find the subgroup of Z_{30} which is of

vel+0 order 3.

5. (a) Show that every quotient group of a cyclic group is cyclic. Give example to show that converse of this statement is

not true in general. Find $\frac{\mathbb{Z}}{N}$ where \mathbb{Z} is the additive group of integers and $N = \{5n : n \in \mathbb{Z}\}.$ 4+3+3=10.

- be represented as a permutation group.
- homomorphism and H be a subgroup of G. If \overline{K} is a normal subgroup of \overline{G} then show that $\phi^{-1}[\overline{K}] = \{k \in G : \phi(k) \in \overline{K}\}$ is a normal subgroup of G.
- 6. (a) (i) State and prove Lagrange's theorem for the order of subgroup of a finite group. Is the converse true? Justify your answer.

1+5+1=7

(ii)	List	the	elem	ents	of $\frac{\mathbb{Z}}{4\mathbb{Z}}$	Z O	and
VOTO					table		
	lo que	ubgre		f[H] i	(i)		3

- (b) (i) Show that any two disjoint cycles commute. 5
- (ii) Let G be a group and Z(G) be the center of G. If $\frac{G}{Z(G)}$ is cyclic then show that G is Abelian.
- 7. (a) Let G be a group and H be any subgroup of G. If N is any normal subgroup of G, then show that:
 - (i) $H \cap N$ is a normal subgroup of H.
 - (ii) N is a normal subgroup of HN.

(iii)
$$\frac{HN}{N} \cong \frac{H}{H \cap N}$$
.

2+2+6=10

- (b) Let $f: G \to G'$ be an onto group homomorphism and H be a subgroup of G, H' a subgroup of G'. Prove that:
 - f[H] is a subgroup of G'. (i)
- (ii) $f^{-1}[H']$ is a subgroup of G containing $K = \ker f$, where $f^{-1}[H'] = \{x \in G : f(x) \in H'\}.$

(a) Let C be a group and H be any

(I) How is a normal subgroup of

(ii) · N is a normal subgroup of HN.

(iii) There exists a one-to-one correspondence between the set of subgroups of G containing K and set of subgroups of G'. 01=2+8+2 show that G is Abelian.