7. (a) (i) Define reciprocal cone. Show that the cones $ax^2 + by^2 + cz^2 = 0$ and

bus instance a grant probability of the locus and $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$ are reciprocal.

(ii) Find the equation of the right circular cylinder whose guiding curve is $x^2 + y^2 + z^2 = 9$,

on box x-y+z=3.

5+5=10

(b) (i) Find the equation of the director sphere to the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

(ii) Show that from any point six normals can be drawn to a

conicoid $ax^2 + by^2 + cz^2 = 1$.

01=5+5-10 tormed by the planes

z=0, z+x=0, x+y=0, x+y+z=o

that the three lines of

hortest distance intersect at the point

1 = 2 + 2x = y = z = -a

Total number of printed pages-8

3 (Sem-3/CBCS) MAT HC 3

2023

MATHEMATICS

(Honours Core)

Paper: MAT-HC-3036

(Analytical Geometry)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **all** the questions: 1×10=10
 - (a) When the origin is shifted to a point on the x-axis without changing the direction of the axes, the equation of the line 2x+3y-6=0 takes the form lx+my=0. What is the new origin?
 - (b) Find the centre of the ellipse $2x^2 + 3y^2 4x + 5y + 4 = 0.$

- Find the angle between the lines represented by the equation $x^2 + xu - 6u^2 = 0$.
- Transform the equation $\frac{1}{r} = 1 + \cos \theta$ into cartesian form.
- Find the equation of the tangent to the conic $y^2 - xy - 2x^2 - 5y + x - 6 = 0$ at the point (1,-1).
- (f) Express the non-symmetric form of equation of a line $\frac{y}{p} + \frac{z}{c} = 1$, x = 0 in symmetric form.
- Write down the standard form of equation of a system of coaxial spheres.
- Write down the equation of a cone whose vertex is origin and the guiding curve is $ax^2 + by^2 + cz^2 = 1$, lx + my + nz = p.
- (i) Define a right circular cylinder.

doin (j) Find the equation of the tangent plane to the conicoid has and atus

at the point
$$(\alpha, \beta, \gamma)$$
 on it.

- 2. Answer all the questions: (a) Show that the equation of the tangent
- (a) If $(at^2, 2at)$ is the one end of a focal chord of the parabola $y^2 = 4ax$, find the other end.
- Show that the equation of the lines through the origin, each of which makes an angle α to the line y = x is $x^2 - 2xy \sec 2\alpha + y^2 = 0.$
 - Find the point where the line

$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$$

meets the plane x+y+z=3.

Find the equation of the sphere passing the points delibered add evireb (0,0,0), (a,0,0), (0,b,0), (0,0,c)

- end (e) Find the equation of the plane which cuts the surface $2x^2 - 3y^2 + 5z^2 = 1$ in a conic whose centre is (1, 2, 3).
- 3. Answer any four questions: 2. Answer all the questions
- (a) Show that the equation of the tangent to the conic $\frac{l}{r} = 1 + e \cos \theta$ at the point whose vertical angle is α is given by

$$\frac{1}{-} = e\cos\theta + \cos(\theta - \alpha).$$
senil and to obtain any and the world (d)

- (b) Prove that the line lx + my = n is a normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if $\frac{a^2}{1^2} + \frac{b^2}{m^2} = \frac{\left(a^2 - b^2\right)}{n^2}.$
 - Find the asymptotes of the hyperbola $2x^2 - 3xy - 2y^2 + 3x + y + 8 = 0$ and derive the equations of the principal axes. 0. 0. (0. 0. b) (0. 0. 0)

(d) Prove that the lines

end of the
$$\frac{x+5}{3} = \frac{y+4}{1} = \frac{z-7}{-2}$$
 and

01 = 3x + 2y + z - 2 = 0 = x - 3y + 2z - 13 are coplanar. Find the equation of the plane and tag in which they lie. World (d)

The section of a cone whose guiding

the curve is the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $z = 0$

by the plane x=0, is a rectangular hyperbola. Prove that the locus of the

vertex is
$$\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1$$
.

(f) Find the centre and the radius of the $9x^2 - 24xy + 16y^2 - 18x$ = 0

$$x^{2} + y^{2} + z^{2} - 8x + 4y + 8z - 45 = 0,$$

$$x - 2y + 2z = 3.$$

Answer either (a) or (b) from the following 10×4=40 questions:

4. (a) (i) Find the point of intersection of the lines represented by the equation

$$01 = c + c \qquad ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

- Find the equation of the polar of the point (2, 3) with respect to the conic $x^2 + 3xy + 4y^2 - 5x + 3 = 0$. 01=2+2 3x+2y+z-2=0=x-3y+2z-13 are
- coplanar. Find the equation of the plane Prove that the straight line y = mx + c touches the parabola $0 = x \cdot 1 = \frac{y^2 = 4a(x+a) \text{ if } c = ma + \frac{a}{m}}{m}.$
- Find the asymptotes of the ends to autoo hyperbola xy + ax + by = 0.

5+5=10

- (a) Discuss the nature of the conic ed to au represented by neo and bails (1) $9x^2 - 24xy + 16y^2 - 18x - 101y + 19 = 0$ and reduce it to canonical form.
 - Prove that the sum of the (b) (i) reciprocals of two perpendicular focal chords of a conic is constant.
- (ii) Show that the semi-latus rectum of a conic is the harmonic mean between the segments of a focal chord.

5+5=10

(a) (i) A variable plane makes intercepts on the co-ordinate axes, the sum of whose squares is a constant and is equal to k^2 . Prove that the locus of the foot of the perpendicular from the origin to the plane is

 $(x^2 + y^2 + z^2)^2 (x^{-2} + y^{-2} + z^{-2}) = k^2$

Two spheres of radii r_1 and r_2 intersect orthogonally. Prove that the radius of the common circle is

 $\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$.

5+5=10

Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes y + z = 0, z + x = 0, x + y = 0, x + y + z = a

> is $\frac{2a}{\sqrt{6}}$ and that the three lines of shortest distance intersect at the point

x=y=z=-a.