Total number of printed pages-16

3 (Sem-5/CBCS) MAT HC 1 (N/O)

2023

MATHEMATICS

(Honours Core)

OPTION-A (For New Syllabus)

Paper: MAT-HC-5016

(Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Which point on the Riemann sphere represents ∞ of the extended complex plane C∪{∞}?
 - (b) A set $S \subseteq \mathbb{C}$ is closed if and only if S contains each of its _____ points.

 (Fill in the gap)

Contd.

- (c) Write down the polar form of the Cauchy-Riemann equations.
- (d) The function $f(z) = \sinh z$ is a periodic function with a period ______.

 (Fill in the gap)
- (e) Define a simple closed curve.
- (f) Write down the value of the integral $\int_C f(z) dz$, where $f(z) = ze^{-2}$ and C is the circle |z| = 1.
 - (g) Find $\lim_{n\to\infty} z_n$, where $z_n = -1 + i\frac{(-1)^n}{n^2}$.
- 2. Answer the following questions: $2\times4=8$
 - (a) Let $f(z) = i\frac{z}{2}$, |z| < 1. Show that $\lim_{z \to 1} f(z) = \frac{i}{2}$, using $\varepsilon \delta$ definition.
 - (b) Show that all the zeros of sinhz in the complex plane lie on the imaginary axis.

- (c) Evaluate the contour integral $\int_C \frac{dz}{z}$, where C is the semi circle $z = e^{i\theta}$, $0 \le \theta \le \pi$
 - (d) Using Cauchy's integral formula, evaluate

$$\int_{C} \frac{e^{2z}}{z^4} dz$$
, where C is the circle $|z| = 1$.

- 3. Answer **any three** questions from the following: 5×3=15
 - (a) Find all the fourth roots of -16 and show that they lie at the vertices of a square inscribed in a circle centered at the origin.
 - (b) Suppose f(z)=u(x, y)+iv(x, y), (z=x+iy) and $z_0=x_0+iy_0$, $w_0=u_0+iv_0$. Then prove the following:

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0,$$

$$\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0,$$
if and only
if
$$\lim_{z\to z_0} f(z) = w_0.$$

(c) (i) Show that the function
$$f(z) = Rez$$
 is nowhere differentiable.

(ii) Let
$$T(z) = \frac{az+b}{cz+d}$$
, where $ad-bc \neq 0$.
Show that $\lim_{z \to \infty} T(z) = \infty$ if $c = 0$.
 $3+2=5$

(d) Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Show that

$$\left| \int_C \frac{z+4}{z^3-1} \, dz \right| \le \frac{6\pi}{7}$$

- (e) State and prove fundamental theorem of algebra.
- 4. Answer **any three** questions from the following: 10×3=30

(a) (i) Show that
$$exp(z+\pi i) = -exp(z)$$

(ii) Show that
$$\log(-1+i)^2 \neq 2\log(-1+i)$$

- (c) (i) Show that the function f(z) = Rez is nowhere differentiable.
 - (ii) Let $T(z) = \frac{az+b}{cz+d}$, where $ad-bc \neq 0$. Show that $\lim_{z \to \infty} T(z) = \infty$ if c = 0. 3+2=5
 - (d) Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Show that

$$\left| \int_C \frac{z+4}{z^3-1} \, dz \right| \le \frac{6\pi}{7}$$

- (e) State and prove fundamental theorem of algebra.
- 4. Answer **any three** questions from the following: 10×3=30
 - (a) (i) Show that $exp(z+\pi i) = -exp(z)$
 - (ii) Show that $\log(-1+i)^2 \neq 2\log(-1+i)$

- (iii) Show that $|\sin z|^2 = \sin^2 x + \sinh^2 y \qquad 2$
- (iv) Show that a set S⊆C is unbounded if and only if every neighbourhood of the point at infinity contains at least one point of S.
- (b) (i) Suppose that $f(z_0) = g(z_0) = 0$ and that $f'(z_0)$, $g'(z_0)$ exist with $g'(z_0) \neq 0$. Using the definition of derivative show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$$
 5

(ii) Show that

$$z^{2}e^{3z} = \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} z^{n}$$
,
where $|z| < \infty$.

- (c) State and prove Laurent's theorem.
- (d) (i) Using definition of derivative, show that $f(z) = |z|^2$ is nowhere differentiable except at z = 0. 5

5

(ii) Define singular points of a function. Determine singular points of the functions:

$$f(z) = \frac{2z+1}{z(z^2+1)} ;$$

$$g(z) = \frac{z^3 + i}{z^2 - 3z + 2}$$
 1+4=5

- (e) (i) Let f(z)=u(x,y)+iv(x,y) be analytic in a domain D. Prove that the families of curves $u(x,y)=c_1,\ v(x,y)=c_2$ are orthogonal.
 - (ii) Let C denote a contour of length L and suppose that a function f(z) is piecewise continuous on C. If M is a non-negative constant such that

 $|f(z)| \le M$ for all z in C then show that

$$\left| \int_C f(z) dz \right| \leq ML. \quad 5+5=10$$

- (f) (i) Prove that two non-zero complex numbers z_1 and z_2 have the same moduli if and only if $z_1 = c_1 c_2$, $z_2 = c_1 \overline{c}_2$, for some complex numbers c_1, c_2 .
 - (ii) Show that mean value theorem of integral calculus of real analysis does not hold for complex valued functions w(t).
 - (iii) State Cauchy-Goursat theorem.

1

(iv) Show that
$$\lim_{z\to\infty} \frac{z^2+1}{z-1} = \infty$$
.