Total number of printed pages-7

44 (1) CIT0100304

2023

MATHEMATICS-I

Paper : CIT 0100304
Full Marks : 60
Time : $2^{1} / 2$ hours
The figures in the margin indicate full marks for the questions.

1. Answer the following questions : $1 \times 8=8$
(a) State the principle of mathematical induction.
(b) Give an example of a transitive relation.
(c) State the principle of inclusion and exclusion for two sets.
(d) State the pigeonhole principle.
(e) Define the terms: Symmetric matrix and Skew-symmetric matrix.
(f) Give an example of an invertible matrix.
(g) What do you mean by measure of central tendency?
(h) If $A=\{1,2\}$ and $B=\{0,1,-1\}$, what is the cardinality of $(A \times B)$?
2. Answer any six of the following questions: $2 \times 6=12$
(a) Find the mean, median and mode for the following data :

$$
2,1,3,1,5,2,1,1,3,4
$$

(b) For the matrix $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 9 & 5\end{array}\right]$
find the following :
(i) Rank of A
(ii) Transpose of A
(iii) Determinant of A
(iv) Eigenvalues of A
(c) Express $A=\left[\begin{array}{ll}1 & 0 \\ 5 & 3\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
(d) Give an example of an equivalence relation.
(e) Find the determinant of the matrix

$$
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 6 & 5 \\
0 & 0 & 3
\end{array}\right]
$$

(f) A bag contains 4 balls. Two balls are drawn at random without replacement and are found to be blue. What is the probability that all balls in the bag are blue?
(g) State Bayes' theorem.
(h) Find the probability distribution for the number of doublets in the three throws of a pair of dice.
(i) Ten numbered cards are there from 1 to 15 and two cards are chosen at random such that the sum of the numbers on both the cards is even. Find the probability that the chosen cards are odd-numbered.
(j) If $P(A)=0.15$, then what is the probability of not A i.e., $P(\operatorname{not} A)$?
3. Answer any four of the following questions:
$5 \times 4=20$
(a) Show that the relation R in the set of integers Z given by $R=\{(a, b)| | a-b \mid$ is even\} is an equivalence relation.
(b) Show that the function $f: Z \rightarrow Z$ defined by $f(x)=2 x$ is one-one but not onto.
(c) Prove using the principle of mathematical induction :

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

(d) Prove that every square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrix.
(e) State the Cayley-Hamilton theorem and verify for the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right]$.
(f) Find the inverse of the matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
5 & 3
\end{array}\right]
$$

(g) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 6 & 5 \\
0 & 0 & 3
\end{array}\right]
$$

(h) Show that intersection of two equivalence relation is an equivalence relation.
4. Answer any two of the following questions :

$$
10 \times 2=20
$$

(a) Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right] \text { using elementary }
$$

operations.
(b) Find the eigenvalues and eigenvectors

$$
\text { of the matrix } A=\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 3 & 2 \\
0 & 0 & -2
\end{array}\right]
$$

(c) Solve the following system of equations using Gauss elimination method :

$$
\begin{aligned}
& x+y+z=2 \\
& x+2 y+3 z=5 \\
& 2 x+3 y+4 z=11
\end{aligned}
$$

(d) Find the solution of the given 3×3 system using Cramer's rule :

$$
\begin{aligned}
& x+y-z=6 \\
& 3 x-2 y+z=-5 \\
& x+3 y-2 z=14
\end{aligned}
$$

(e) Prepare a frequency distribution table for the scores given :
$42,22,55,18,50,10,33,29,17,29$, $29,27,34,15,40,42,40,41,35,27$, $44,31,38,19,54,55,38,19,20,30$, $42,59,15,19,27,23,40,32,28,51$.

Take the class intervals as $10-20,20-30$, 30-40, 40-50, 50-60.

From the frequency distribution table answer the following questions :
(i) What does the frequency corresponding to the class interval 20-30 indicate?
(ii) In which class intervals are the scores 10,20 and 30 included ?
(iii) Find the range of the scores.

