Total number of printed pages-11

3 (Sem-5/CBCS) MAT HC 2

2022

MATHEMATICS

(Honours)
Paper : MAT-HC-5026
(Linear Algebra)
Full Marks : 80
Time: Three hours
The figures in the margin indicate full marks for the questions.

1. Answer any ten questions: $1 \times 10=10$
(i) "A plane in \mathbb{R}^{3} not through the origin is a subspace of \mathbb{R}^{3}."
(State True or False)
(ii) If the equation $A X=0$ has only the trivial solution then what is the null space of A ?
(iii) Suppose two matrices are row equivalent. Are their row spaces the same?
(iv) Let A be matrix of order $m \times n$. When the column space of A and \mathbb{R}^{m} are equal?
(v) Is the set $\{\sin t, \cos t\}$ linearly independent in $C[0,1]$?
(vif What is the dimension of zero vector space?
(vii) If A is a 7×9 matrix with a twodimensional null space, what is the rank of A ?
(Viii) " 0 is an eigenvalue of a matrix A if and only if A is invertible."
(State True or False)
(ix) Let A be an $n \times n$ matrix such that determinant of A is zero. Is A invertible?
(x) When two matrices A and B are said to be similar?
(xi) Define complex eigenvalue of a matrix.
(xii) Let an $n \times n$ matrix has n distinct eigenvalues. Is it diagonalizable?
(xiii) What do you mean by distance between two vectors in \mathbb{R}^{n} ?
(fii) In \mathbb{R}^{3}, show that the set
$W=\left\{(a, b, c): a^{2}+b^{2}+c^{2} \leq 1\right\}$ is not a subset of V.
(iv) Let $P_{1}(t)=1, P_{2}(t)=t, P_{3}(t)=4-t$. Show that $\left\{P_{1}, P_{2}, P_{3}\right\}$ is linearly dependent in the vector space of polynomials.
(1) Let $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right], u=\left[\begin{array}{r}6 \\ -5\end{array}\right]$. Examine whether u is a eigenvector of A.
(vi) The characteristic polynomial of a 6×6 matrix is $\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}$. Find the eigenvalue of the matrix.
(vii) Show that the eigenvalues of a triangular matrix are just the diagonal elements of the matrix.
(ivii) Let $v=(1,-2,2,0)$. Find a unit vector u in the same direction as v.
(2v) Let $u=\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{r}-3 \\ 1\end{array}\right]$. Compute $\frac{u \cdot v}{u \cdot u}$.

3 (Sem -5/CBCS) MAT HC $2 / \mathrm{G}$
4
(x) Suppose $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ contains a dependent subset. Show that S is also dependent.
3. Answer any four questions : $\quad 5 \times 4=20$
(i) Let $A=\left[\begin{array}{rrrr}2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6\end{array}\right]$. Find a non-
zero vector in column space of A and a non-zero vector in null space of A.
(ii) If a vector space V has a basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, then prove that any set in V containing more than n vectors must be linearly dependent.

Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V, then prove that the co-ordinate mapping $x \rightarrow[x]_{B}$ is a one-to-one linear transformation from V onto \mathbb{R}^{n}.
(iv) Prove that similar matrices have the same characteristic polynomial and hence the same eigenvalues.
(v) Is 5 an eigenvalue of $A=\left[\begin{array}{rrr}6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6\end{array}\right]$?
(0i) Let $U=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{-2}{3} \\ 0 & \frac{1}{3}\end{array}\right]$ and $x=\left[\begin{array}{c}\sqrt{2} \\ 3\end{array}\right]$. Show
that U has orthonormal columns and $\|U x\|=\|x\|$.
(vii) Find a QR factorization of

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(viii) Find the range and kernel of $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\frac{x+y}{x-y}\right]$
4. Answer any four questions : $\quad 10 \times 4=40$
(i) Find the spanning set for the null space of the matrix
$A=\left[\begin{array}{rrrrr}-3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -1\end{array}\right]$
(ii) Let $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be a set in a (an 10 vector space V over \mathbb{R} and let 11. Whan $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. Prove that-
(a) if one of the vectors in S is a linear combination of the remaining vectors in S, then the set formed from S by removing that vector still spans H;
(b) if $H \neq\{0\}$, some subset of S is a basis for H.
$5+5=10$

3 (Sem-5/CBCS) MAT HC $2 / \mathrm{G} \quad 7$
7
Contd.
(iii) Let V be the vector space of 2×2 symmetric matrices over \mathbb{R}. Show that $\operatorname{dim} V=3$. Also find the co-ordinate vector of the matrix $A=\left[\begin{array}{rr}4 & -11 \\ -11 & -7\end{array}\right]$ relative to basis

$$
\left\{\left[\begin{array}{rr}
1 & -2 \\
-2 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right],\left[\begin{array}{rr}
4 & -1 \\
-1 & -5
\end{array}\right]\right.
$$

$$
5+5=10
$$

[(i0) Define a diagonalizable matrix. Prove that an $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvector. $\quad 1+9=10$
(v) (a) Show that λ is an eigenvalue of an invertible matrix A if and only if λ^{-1} is an eigenvalue of A^{-1}.
(b) If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A, then show that $k \lambda_{1}, k \lambda_{2}, \ldots, k \lambda_{n}$ are the eigenvalues of $k A$.
(c) Show that the matrices A and A^{T} (transpose of A) have the same eigenvalues.

$$
5+2^{1 / 2}+2^{1 / 2}=10
$$

U(6) Compute A^{8} where $A=\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right]$
(vii) Define orthogonal set and orthogonal basis of \mathbb{R}^{n}. Show that $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3}. Also express the vector $y=\left[\begin{array}{r}6 \\ 1 \\ -8\end{array}\right]$ as a linear combination of the vector in S.

$$
(1+1)+5+3=10
$$

Let V be an inner product space. Show that-
(a) $\langle v, 0\rangle=\langle 0, v\rangle=0$;
(b) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$ where $u, v, w \in V$;
(c) Define norm of a vector in V;
(d) For u, v in V, show that

$$
|\langle u, v\rangle| \leq\|u\|\|v\| .
$$

(ix) What do you mean by Gram-Schmidt process? Prove that if $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ is a basis for a subspace W or \mathbb{R}^{n} and define $v_{1}=x_{1}$

$$
\begin{aligned}
& v_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{2}} v_{1} \\
& v_{3}=x_{3}-\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}
\end{aligned}
$$

$v_{p}=x_{p}-\frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}-\ldots \frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}$
then $\left\{v_{1}, v_{2}, \ldots v_{p}\right\}$ is an orthogonal basis for W. Also if $W=\operatorname{span}\left\{x_{1}, x_{2}\right\}$ where $x_{1}=\left[\begin{array}{l}3 \\ 6 \\ 6\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. Construct an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W.

$$
1+6+3=10
$$

Define orthogonal complement of a subspace. Let $\left\{u_{1}, u_{2}, \ldots u_{5}\right\}$ be an orthogonal basis for \mathbb{R}^{5} and $y=c_{1} u_{1}+\ldots+c_{5} u_{5}$. If the subspace $W=\operatorname{span}\left\{u_{1}, u_{2}\right\}$ then write y as "the sum of vectors Z_{1} in W and a vector Z_{2} in complement of W. Also find the distance from y to $W=\operatorname{span}\left\{u_{1}, u_{2}\right\}$, where $y=\left[\begin{array}{r}-1 \\ -5 \\ 10\end{array}\right], u_{1}=\left[\begin{array}{r}5 \\ -2 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$.
$1+\sigma+3=10$

