3 (Sem-3/CBCS) PHY HC 1

2022 PHYSICS

(Honours)

Paper: PHY-HC-3016

(Mathematical Physics-II)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** of the following questions: 1×7=7
 - (a) Define the singular point of a second order linear differential equation.
 - (b) If $P_n(x)$ and $Q_n(x)$ are two independent solutions of Legendre equation, then write the general solution of the Legendre equation.
 - (c) Give one example where Hermite polynomial is used in physics.

(d) The function $P_n(1)$ is given as

- (i) zero
- (ii) -1
- (iii) $P_n(-1)$
- (iv) 1

(Choose the correct option)

- (e) Define trace of a matrix.
- (f) What is the rank of a zero matrix?
- (g) Define self-adjoint matrix.
- (h) What do you mean by eigenvector?
- (i) Which one of the following represents an equation of a vibrating string?

(i)
$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

(ii)
$$\frac{\partial y}{\partial t} = c \frac{\partial y}{\partial x}$$

- (iii) None of the above (Choose the correct option)
- (j) Write the Laplace equation spherical polar co-ordinate system.
- (k) Define gamma function.
- State the Dirichlet condition for Fourier series.

2

- Answer any four of the following questions:
 2×4=8
 - (a) Check whether Frobenius method can be applied or not to the following equation:

$$2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (x-5)y = 0$$

- (b) If $\int_{-1}^{+1} P_n(x) dx = 2$, find the value of n.
- (c) If A and B are Hermitian matrices, show that AB + BA is Hermitian whereas AB BA is skew-Hermitian.
- (d) Verify that $(AB)^T = B^T A^T$, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$$

(e) Given matrices

$$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$
show that $\sigma_1 \sigma_2 - \sigma_2 \sigma_1 = 2i\sigma_3$.

(f) Using the property of gamma function evaluate the integral

$$\int_{0}^{\infty} x^4 e^{-x} \, dx$$

(g) Write the degree and order of the following partial differential equations:

(i)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(ii)
$$\left(\frac{\partial u}{\partial x}\right)^3 + \frac{\partial u}{\partial t} = 0$$

- (h) Find the value of a_0 of the Fourier series for the function $f(x) = x \cos x$ in the interval $-\pi < x < \pi$.
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) (i) Why is the function $(1-2xh+h^2)^{-\frac{1}{2}}$ known as a generating function of Legendre polynomial?
 - (ii) Show that

$$(1-2xh+h^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} P_n(x)h^n$$

where $P_n(x)$ is the Legendre polynomial.

(b) Evaluate explicitly the Legendre's polynomials $P_2(x)$ and $P_3(x)$.

(c) Write the recursion formula for gamma function. Prove that

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} = 1.772$$

(d) What is diagonalize matrix? Diagonalize the following matrix: 1+4=5

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(e) Express the matrix:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & -2 \\ 4 & 2 & 0 \end{bmatrix}$$
 as a sum of symmetric

and skew-symmetric matrix.

What is adjoint of a matrix? For the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ verify the theorem

$$A \cdot (AdjA) = (AdjA) \cdot A = |A| \cdot I$$

where *I* is unit matrix.

(g) If the solution y(x) of Hermite's differential equation is written as

$$y(x) = \sum_{r=0}^{\infty} a_r x^{k+r}$$
, show that the allowed values of k are zero and one only.

- (h) Find the Fourier series representing f(x) = x, $0 < x < 2\pi$
- 4. Answer **any three** of the following questions: $10 \times 3 = 30$
 - (a) (i) Verify that the matrix

$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$
 is orthogonal. 2

- (ii) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and also find A^{-1} . 5+3=8
- (b) Obtain the power series solution of the Legendre equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$

(c) (i) Obtain the following orthogonality property of Legendre polynomial:
$$\int_{-1}^{+1} P_n(x) P_m(x) dx = 0 \text{ for } m \neq n \qquad 6$$

(ii) Show that
$$H_0(x) = 1$$
 and $H_1(x) = 2x$ 2+2=4

(d) Prove the following recurrence relations: 4+3+3=10

(i)
$$nP_n = (2n-1)xP_{n-1} - (n-1)P_{n-2}$$

(ii)
$$x P'_n - P'_{n-1} = n P_n$$

(iii)
$$2x H_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$$

- (e) What is periodic function? Express the periodic functions in a series of sine and cosine functions. What are Fourier coefficients? Determine the Fourier coefficients. 1+1+1+7=10
- (f) (i) Using the method of separation of variables, solve: 6 $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \text{ where } u(x,0) = 6e^{-3x}$

(ii) Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(g) (i) If $H_n(x)$ be the polynomial of Hermite differential equation, prove that

$$\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) \, dx = 2^n \sqrt{\pi \cdot n!}$$
 7

(ii) Prove that the following matrix is unitary:

$$\begin{bmatrix} \frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\ \frac{1}{2}(1+i) & \frac{1}{2}(1-i) \end{bmatrix}$$
 3

(h) Deduce the one dimensional wave equation of transversely vibrating string under tension T. Solve the equation by the method of separation of variables. 7+3=10