3 (Sem-3) MAT M 2

2016

MATHEMATICS

(Major)

Paper : 3.2

(Linear Algebra and Vector)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) Show that in a vector space V(F) $\alpha V = \beta V \Rightarrow \alpha = \beta$

$$\alpha V_1 = \alpha V_2 \Rightarrow V_1 = V_2, \quad \alpha, \beta \in F; \quad V, V_1, V_2 \in V$$

(b) Determine the subspace of \mathbb{R}^3 spanned by the vectors $\alpha = (1, 2, 3)$, $\beta = (3, 1, 0)$. Check if the vector (2, 1, 3) is in this subspace.

(c) Examine if the following set S is a subspace of \mathbb{R}^3 :

$$S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0, 2x - y + z = 0\}$$

(d) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation defined by

$$T(x, y, z) = (x + y + z, 2x + y + 2z, x + 2y + z)$$

 $(x, y, z) \in \mathbb{R}^3$

Determine $\ker T$ and its dimension.

(e) For

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix}$$

find out the characteristic equation.

- (f) If $k \neq 0$ is an eigenvalue of an invertible operator T, show that k^{-1} is an eigenvalue of T^{-1} .
- (g) The eigenvalues of a real symmetric matrix
 - (i) have unit modulus
 - (ii) are all purely imaginary
 - (iii) are all real
 - (iv) are either 0 or 1

(Choose the correct option)

2. Answer the following questions:

 $2 \times 4 = 8$

(a) Prove that the set of vectors

 $\{(1, 2, 2), (2, 1, 2), (2, 2, 1)\}$

is linearly independent in \mathbb{R}^3 .

- (b) Let V and W be vector spaces over the same field F and $T:V\to W$ be a linear mapping such that $\ker T=\{0\}$. Show that the image of a linearly independent set of vectors in V is also linearly independent in W.
- (c) If W is a subspace of a vector space V, then show that L(W) = W and conversely. (L(W)): linear span of W.
- (d) Show that two eigenvectors of a square matrix A over a field F corresponding to two distinct eigenvalues of A are linearly independent.

3. Answer any one part:

5

(a) The matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ relative to the ordered basis $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 and $\{(1, 0), (1, 1)\}$ of \mathbb{R}^2 is

$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$$

Find T.

(b) Find range, rank, ker and nullity of the linear transformation defined by

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$

such that

$$T(x, y, z) = (x + y, 2z - x), (x, y, z) \in \mathbb{R}^3$$

- **4.** Answer the following questions: $10 \times 2 = 20$
 - (a) Prove that a finite set of non-zero vectors $\{v_1, v_2, \dots, v_n\}$ in a vector space V(F) is linearly dependent if and only if there exists v_k , $2 \le k \le n$, such that v_k is a linear combination of v_1, v_2, \dots, v_{k-1} .

Or

If W is a subspace of a finite dimensional vector space V, prove that

$$\dim \frac{V}{W} = \dim V - \dim W$$

(b) Let V be the space of $n \times n$ matrices over F. Let A be a fixed $n \times n$ matrix over F, and T is a linear operator left multiplication by A' on V. Prove that both A and T have the same eigenvalues.

Or

Let a, b, c be elements of a field F and

$$A = \begin{pmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{pmatrix}$$

Prove that the characteristic polynomial of A is same as that of its minimal polynomial.

GROUP-B

(Vector)

(Marks: 40)

5. Answer the following:

1×3=3

(a) Find the volume of the parallelopiped whose coterminous edges are represented by

$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}, \ \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \ \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$$

- (b) Show that the vectors $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$, $\vec{c} \times (\vec{a} \times \vec{b})$ are coplanar.
- (c) If \vec{a} and \vec{b} are two non-collinear vectors such that $\vec{a} = \vec{c} + \vec{d}$, where \vec{c} is a vector parallel to \vec{b} , and \vec{d} is a vector perpendicular to \vec{b} , obtain the expressions for \vec{c} and \vec{d} in terms of \vec{a} and \vec{b} .

6. If \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2} \vec{b}$

the angles which \vec{a} makes wi

find the angles which \vec{a} makes with \vec{b} and \vec{c} , \vec{b} and \vec{c} being non-parallel.

- **7.** Answer the following questions: $5\times3=15$
 - (a) If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors, then prove that $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$, $\vec{a} \times \vec{b}$ are also non-coplanar. Also express \vec{a} , \vec{b} , \vec{c} in terms of $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$, $\vec{a} \times \vec{b}$.

Or

Prove that

$$|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2a^2$$

where $a = |\vec{a}|$

- (b) If $\vec{u} = 5t^2\hat{i} + t\hat{j} t^3\hat{k}$ and $\vec{v} = \sin t\hat{i} \cos t\hat{j}$, evaluate
 - (i) $\frac{d}{dt}(\vec{u}\cdot\vec{v})$
 - (ii) $\frac{d}{dt}(\vec{u}\cdot\vec{u})$
 - (iii) $\frac{d}{dt}(\vec{u} \times \vec{v})$
- (c) Taking $\vec{F} = x^2 y \hat{i} + xz \hat{j} + 2yz \hat{k}$, verify that div curl $\vec{F} = 0$.

(Continued)

8. Answer the following questions: $10 \times 2 = 20$

(a) Prove that $\operatorname{curl}[\vec{r} \times (\vec{a} \times \vec{r})] = 3\vec{r} \times \vec{a}$, where \vec{a} is a constant vector and

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Or

Prove that the necessary and sufficient condition for a vector $\overrightarrow{v}(t)$ to have a constant direction is

$$\vec{v} \times \frac{d\vec{v}}{dt} = \vec{0}$$

(b) Evaluate

$$\int \vec{F} \cdot d\vec{r}$$

along the curve $x^2 + y^2 = 1$, z = 1 in the positive direction from (0, 1, 1) to (1, 0, 1), where $\vec{F} = (2x + yz)\hat{i} + xz\hat{j} + (xy + 2z)\hat{k}$.

Or

Evaluate

$$\iint\limits_{S} \overrightarrow{F} \cdot \hat{n} \, dS$$

where $\vec{F} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}$ and S is that portion of the plane x + y + z = 1 which lies in the first octant.

* * *