- (g) What do you mean by quality?

 Describe different dimensions of quality.
 - (h) Explain the terms: 4+4+2=10
 - (i) Average outgoing quality limit
 - (ii) Specification limits
 - (iii) Why are ASN and ATI calculated?

Total number of printed pages-8

3 (Sem-4/CBCS) STA HC 3

2022 STATISTICS

(Honours)

Paper: STA-HC-4036

(Statistical Quality Control)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: (any seven)
 - (a) Main tool of statistical equality control is
 - (i) W. A. Shewhart chart
 - (ii) Acceptance sampling plan
 - (iii) Both (i) and (ii)
 - (iv) None of the above (Choose the incorrect option)

Contd.

- (b) Which one of the following is not a control chart for variable?
 - (i) \overline{X} chart
 - (ii) σ -chart
 - (iii) R-chart
 - (iv) C-chart

(Choose the correct option)

(c) In control chart for standard deviation an estimate of the population standard deviation is $\hat{\sigma} = \frac{\overline{s}}{c_0}$.

(State True or False)

- (d) If the lower control limit is found negative in case of control charts for attributes, then it is taken to be_____.

 (Fill in the blank)
- (e) The control chart for fraction defective is called *np*-chart.

(State True or False)

- (f) The probability of accepting a lot with fraction defective P_t is known as
 - (i) consumer's risk
 - (ii) producer's risk

- (iii) type-I error and all the life of the
- (iv) None of the above (Choose the correct option)
- (g) In the construction of a control chart the extreme control limits are fixed at a distance of
 - (i) o
 - (ii) 20
 - (iii) 3 o
 - (iv) 2.58 o

(Choose the correct option)

- (h) A curve showing the probability of accepting a lot $P_a(p)$ for variation in the incoming lot of quality p is known as
 - (i) O. C. curve
 - (ii) A. S. N. curve
 - (iii) A. O. Q curve
 - (iv) None of the above (Choose the correct option)

- (i) If the lot is accepted on the basis of the sample inspection plan, then
 - (i) ATI = ASN
 - (ii) ATI > ASN
 - (iii) ATI < ASN
 - (iv) None of the above (Choose the correct option)
- (j) In a control chart the upper control limit can be
 - (i) negative
 - (ii) never negative
 - (iii) zero
- (iv) either negative or positive (Choose the correct option)
- 2. Answer **any four** of the following questions: 2×4=8
 - (a) What is meant by process control in industrial statistics?
 - (b) Distinguish between chance causes and assignable causes in SQC.

- (c) Explain the term 'natural tolerance limits'.
- (d) When is S-chart used in place of R-chart?
- (e) Write down the control limits in p-chart if 50 blades are found defective in a consignment of 200 blades.
- (f) What are the limitations of the control charts for variables?
- (g) What do you understand by acceptance quality level (A.Q.L)?
- (h) What is meant by control limits?
- 3. Answer any three of the following questions: 5×3=15
 - (a) Discuss the construction of p-chart when all samples are of same size. How is the procedure modified for variable sample size?
 - (b) Compare the charts of variable and charts of attributes.
 - (c) Explain acceptance sampling plan.

- (d) Describe the control chart for S. What are the advantages of S-chart over the R-chart?
- (e) Discuss the relative merits and demerits of single and double sampling plans.
- (f) Write briefly a note on historical perspective of quality control.
- (g) Write briefly the overview of six-sigma limit.
- (h) A machine is set to deliver packets of a given weight. Weights for six samples of size 5 each were recorded. Mean and range of each sample are given below:

Sample no: 1 2 3 4 5 6

Mean: 14 18 16 15 17 16

Range: 7 6 6 4 8 5

Find the control limits for mean and range charts. (Given that for n = 5, $A_2 = 0.577$, $D_4 = 2.115$, $D_3 = 0$ and for n = 6, $A_2 = 0.483$, $D_3 = 0$, $D_4 = 2.004$)

- 4. Answer any three of the following questions: 10×3=30
 - (a) What are the advantages of statistical quality control? Also explain the justification for using three sigma (3σ) limits in the control charts.
 - (b) Explain in detail \overline{X} and R-charts. What purpose do they serve? What are their advantages over the p-chart?
 - (c) What is C-chart? How are the control limits for C-chart obtained? Justify the use of Poisson distribution.
 - (d) Describe the single sampling plan for acceptance sampling deriving expressions for the producer's and consumer's risks and show that

ATI =
$$n + (N - n) \left[1 - \sum_{x=0}^{c} \left\{ e^{-n\overline{P}(n\overline{P})^{x}} / x! \right\} \right]$$

- (e) Describe the method of double sampling plan and derive its OC curve.
- (f) Describe seven tools of statistical process control (SPC).